Suppr超能文献

层状混合超晶格:可设计的量子固体。

Layered hybrid superlattices as designable quantum solids.

机构信息

Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.

出版信息

Nature. 2024 Nov;635(8037):49-60. doi: 10.1038/s41586-024-07858-3. Epub 2024 Nov 6.

Abstract

Crystalline solids typically show robust long-range structural ordering, vital for their remarkable electronic properties and use in functional electronics, albeit with limited customization space. By contrast, synthetic molecular systems provide highly tunable structural topologies and versatile functionalities but are often too delicate for scalable electronic integration. Combining these two systems could harness the strengths of both, yet realizing this integration is challenging owing to distinct chemical bonding structures and processing conditions. Two-dimensional atomic crystals comprise crystalline atomic layers separated by non-bonding van der Waals gaps, allowing diverse atomic or molecular intercalants to be inserted without disrupting existing covalent bonds. This enables the creation of a diverse set of layered hybrid superlattices (LHSLs) composed of alternating crystalline atomic layers of variable electronic properties and self-assembled atomic or molecular interlayers featuring customizable chemical compositions and structural motifs. Here we outline strategies to prepare LHSLs and discuss emergent properties. With the versatile molecular design strategies and modular assembly processes, LHSLs offer vast flexibility for weaving distinct chemical constituents and quantum properties into monolithic artificial solids with a designable three-dimensional potential landscape. This opens unprecedented opportunities to tailor charge correlations, quantum properties and topological phases, thereby defining a rich material platform for advancing quantum information science.

摘要

晶体固体通常表现出稳健的长程结构有序性,这对于它们显著的电子性质和在功能电子学中的应用至关重要,尽管定制空间有限。相比之下,合成分子系统提供了高度可调的结构拓扑和多功能性,但由于其过于脆弱,往往不适合可扩展的电子集成。将这两个系统结合起来可以利用它们各自的优势,但由于化学结合结构和处理条件的明显差异,实现这种集成具有挑战性。二维原子晶体由非键合的范德华间隙隔开的结晶原子层组成,允许各种原子或分子插层剂插入而不破坏现有的共价键。这使得可以创建一组由不同电子性质的交替结晶原子层和自组装的原子或分子夹层组成的多样的层状混合超晶格 (LHSL),这些夹层具有可定制的化学成分和结构基序。在这里,我们概述了制备 LHSL 的策略并讨论了新兴特性。通过灵活的分子设计策略和模块化组装工艺,LHSL 为将不同的化学成分和量子性质编织成具有可设计的三维势能景观的整体人工固体提供了极大的灵活性。这为定制电荷相关性、量子性质和拓扑相开辟了前所未有的机会,从而为推进量子信息科学定义了一个丰富的材料平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验