Hu Shuang, Skelly Lauren E, Kaymak Ebru, Freeberg Lindsay, Lo Te-Wen, Kuersten Scott, Ryder Sean P, Haag Eric S
Department of Biology, University of Maryland, College Park, MD, USA.
Department of Biology, University of Maryland, College Park, MD, USA; Department of Biology, Ithaca College, Ithaca, NY, USA.
Dev Biol. 2019 Feb 15;446(2):193-205. doi: 10.1016/j.ydbio.2018.11.024. Epub 2018 Dec 30.
Proper germ cell sex determination in Caenorhabditis nematodes requires a network of RNA-binding proteins (RBPs) and their target mRNAs. In some species, changes in this network enabled limited XX spermatogenesis, and thus self-fertility. In C. elegans, one of these selfing species, the global sex-determining gene tra-2 is regulated in germ cells by a conserved RBP, GLD-1, via the 3' untranslated region (3'UTR) of its transcript. A C. elegans-specific GLD-1 cofactor, FOG-2, is also required for hermaphrodite sperm fate, but how it modifies GLD-1 function is unknown. Germline feminization in gld-1 and fog-2 null mutants has been interpreted as due to cell-autonomous elevation of TRA-2 translation. Consistent with the proposed role of FOG-2 in translational control, the abundance of nearly all GLD-1 target mRNAs (including tra-2) is unchanged in fog-2 mutants. Epitope tagging reveals abundant TRA-2 expression in somatic tissues, but an undetectably low level in wild-type germ cells. Loss of gld-1 function elevates germline TRA-2 expression to detectable levels, but loss of fog-2 function does not. A simple quantitative model of tra-2 activity constrained by these results can successfully sort genotypes into normal or feminized groups. Surprisingly, fog-2 and gld-1 activity enable the sperm fate even when GLD-1 cannot bind to the tra-2 3' UTR. This suggests the GLD-1-FOG-2 complex regulates uncharacterized sites within tra-2, or other mRNA targets. Finally, we quantify the RNA-binding capacities of dominant missense alleles of GLD-1 that act genetically as "hyper-repressors" of tra-2 activity. These variants bind RNA more weakly in vitro than does wild-type GLD-1. These results indicate that gld-1 and fog-2 regulate germline sex via multiple interactions, and that our understanding of the control and evolution of germ cell sex determination in the C. elegans hermaphrodite is far from complete.
秀丽隐杆线虫中生殖细胞性别的正确决定需要一个由RNA结合蛋白(RBPs)及其靶mRNA组成的网络。在一些物种中,这个网络的变化使得XX个体能够进行有限的精子发生,从而实现自我受精。在秀丽隐杆线虫这个自体受精的物种之一中,全局性别决定基因tra-2在生殖细胞中由一个保守的RBP即GLD-1通过其转录本的3'非翻译区(3'UTR)进行调控。一种秀丽隐杆线虫特有的GLD-1辅因子FOG-2对于雌雄同体的精子命运也是必需的,但其如何修饰GLD-1的功能尚不清楚。gld-1和fog-2基因敲除突变体中的生殖系雌性化被解释为是由于TRA-2翻译的细胞自主升高。与FOG-2在翻译控制中所提出的作用一致,在fog-2突变体中几乎所有GLD-1靶mRNA(包括tra-2)的丰度都没有变化。表位标签显示TRA-2在体细胞组织中大量表达,但在野生型生殖细胞中的水平低至检测不到。gld-1功能的丧失将生殖系TRA-2的表达提高到可检测水平,但fog-2功能的丧失则不会。一个受这些结果限制的tra-2活性的简单定量模型可以成功地将基因型分为正常或雌性化组。令人惊讶的是,即使GLD-1不能与tra-2的3'UTR结合,fog-2和gld-1的活性也能使精子命运得以实现。这表明GLD-1-FOG-2复合物调节tra-2内未表征的位点或其他mRNA靶标。最后,我们量化了作为tra-2活性的“超级抑制因子”发挥遗传作用的GLD-1显性错义等位基因的RNA结合能力。这些变体在体外与RNA的结合比野生型GLD-1更弱。这些结果表明,gld-1和fog-2通过多种相互作用调节生殖系性别,并且我们对秀丽隐杆线虫雌雄同体中生殖细胞性别决定的控制和进化的理解还远远不够完整。