Verde Pablo Emilio
Coordination Center for Clinical Trials, Düsseldorf University Hospital, Moorenstr, Düsseldorf, Germany.
Biom J. 2019 May;61(3):535-557. doi: 10.1002/bimj.201700266. Epub 2019 Jan 2.
The hierarchical metaregression (HMR) approach is a multiparameter Bayesian approach for meta-analysis, which generalizes the standard mixed effects models by explicitly modeling the data collection process in the meta-analysis. The HMR allows to investigate the potential external validity of experimental results as well as to assess the internal validity of the studies included in a systematic review. The HMR automatically identifies studies presenting conflicting evidence and it downweights their influence in the meta-analysis. In addition, the HMR allows to perform cross-evidence synthesis, which combines aggregated results from randomized controlled trials to predict effectiveness in a single-arm observational study with individual participant data (IPD). In this paper, we evaluate the HMR approach using simulated data examples. We present a new real case study in diabetes research, along with a new R package called jarbes (just a rather Bayesian evidence synthesis), which automatizes the complex computations involved in the HMR.
分层元回归(HMR)方法是一种用于荟萃分析的多参数贝叶斯方法,它通过在荟萃分析中明确对数据收集过程进行建模,对标准混合效应模型进行了推广。HMR 允许研究实验结果的潜在外部有效性,并评估系统评价中所纳入研究的内部有效性。HMR 会自动识别呈现相互矛盾证据的研究,并降低它们在荟萃分析中的影响。此外,HMR 允许进行交叉证据合成,即将随机对照试验的汇总结果结合起来,以利用个体参与者数据(IPD)预测单臂观察性研究中的有效性。在本文中,我们使用模拟数据示例评估 HMR 方法。我们展示了一个糖尿病研究中的新实际案例研究,以及一个名为 jarbes(只是一个相当贝叶斯的证据合成)的新 R 包,它能自动执行 HMR 中涉及的复杂计算。