Suppr超能文献

分层元回归方法与临床证据学习

The hierarchical metaregression approach and learning from clinical evidence.

作者信息

Verde Pablo Emilio

机构信息

Coordination Center for Clinical Trials, Düsseldorf University Hospital, Moorenstr, Düsseldorf, Germany.

出版信息

Biom J. 2019 May;61(3):535-557. doi: 10.1002/bimj.201700266. Epub 2019 Jan 2.

Abstract

The hierarchical metaregression (HMR) approach is a multiparameter Bayesian approach for meta-analysis, which generalizes the standard mixed effects models by explicitly modeling the data collection process in the meta-analysis. The HMR allows to investigate the potential external validity of experimental results as well as to assess the internal validity of the studies included in a systematic review. The HMR automatically identifies studies presenting conflicting evidence and it downweights their influence in the meta-analysis. In addition, the HMR allows to perform cross-evidence synthesis, which combines aggregated results from randomized controlled trials to predict effectiveness in a single-arm observational study with individual participant data (IPD). In this paper, we evaluate the HMR approach using simulated data examples. We present a new real case study in diabetes research, along with a new R package called jarbes (just a rather Bayesian evidence synthesis), which automatizes the complex computations involved in the HMR.

摘要

分层元回归(HMR)方法是一种用于荟萃分析的多参数贝叶斯方法,它通过在荟萃分析中明确对数据收集过程进行建模,对标准混合效应模型进行了推广。HMR 允许研究实验结果的潜在外部有效性,并评估系统评价中所纳入研究的内部有效性。HMR 会自动识别呈现相互矛盾证据的研究,并降低它们在荟萃分析中的影响。此外,HMR 允许进行交叉证据合成,即将随机对照试验的汇总结果结合起来,以利用个体参与者数据(IPD)预测单臂观察性研究中的有效性。在本文中,我们使用模拟数据示例评估 HMR 方法。我们展示了一个糖尿病研究中的新实际案例研究,以及一个名为 jarbes(只是一个相当贝叶斯的证据合成)的新 R 包,它能自动执行 HMR 中涉及的复杂计算。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验