Suppr超能文献

通过整合来自异质群体的外部信息来改进线性回归模型的预测:詹姆斯-斯廷(James-Stein)估计量。

Improving prediction of linear regression models by integrating external information from heterogeneous populations: James-Stein estimators.

机构信息

Biostatistics Innovation Group, Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, United States.

Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109, United States.

出版信息

Biometrics. 2024 Jul 1;80(3). doi: 10.1093/biomtc/ujae072.

Abstract

We consider the setting where (1) an internal study builds a linear regression model for prediction based on individual-level data, (2) some external studies have fitted similar linear regression models that use only subsets of the covariates and provide coefficient estimates for the reduced models without individual-level data, and (3) there is heterogeneity across these study populations. The goal is to integrate the external model summary information into fitting the internal model to improve prediction accuracy. We adapt the James-Stein shrinkage method to propose estimators that are no worse and are oftentimes better in the prediction mean squared error after information integration, regardless of the degree of study population heterogeneity. We conduct comprehensive simulation studies to investigate the numerical performance of the proposed estimators. We also apply the method to enhance a prediction model for patella bone lead level in terms of blood lead level and other covariates by integrating summary information from published literature.

摘要

我们考虑以下情况

(1)内部研究基于个体水平数据构建线性回归预测模型;(2)一些外部研究拟合了类似的线性回归模型,这些模型仅使用了部分协变量,并提供了没有个体水平数据的简化模型的系数估计值;(3)这些研究人群存在异质性。我们的目标是整合外部模型汇总信息,以改进内部模型拟合,从而提高预测准确性。我们采用詹姆斯-斯坦收缩方法,提出了一种估计器,无论研究人群异质性程度如何,在信息整合后的预测均方误差方面都不会变差,而且往往更好。我们进行了全面的模拟研究,以研究所提出的估计器的数值性能。我们还通过整合来自已发表文献的汇总信息,将该方法应用于提高血铅水平和其他协变量预测髌骨骨铅水平的预测模型。

相似文献

6
Cycling infrastructure for reducing cycling injuries in cyclists.用于减少骑车人骑行受伤的自行车基础设施。
Cochrane Database Syst Rev. 2015 Dec 10;2015(12):CD010415. doi: 10.1002/14651858.CD010415.pub2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验