Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK.
Mol Microbiol. 2019 Apr;111(4):951-964. doi: 10.1111/mmi.14197. Epub 2019 Jan 31.
Biosynthesis of the nucleotide sugar precursor dTDP-L-rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP-L-rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP-L-rhamnose biosynthesis through their action as dTDP-glucose-4,6-dehydratase and dTDP-4-keto-6-deoxyglucose-3,5-epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio-layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP-rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose-dependent streptococcal pathogens as well as M. tuberculosis with an IC of 120-410 µM. Importantly, we confirmed that Ri03 inhibited dTDP-L-rhamnose formation in a concentration-dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP-L-rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP-rhamnose biosynthesis in pathogenic bacteria.
核苷酸糖前体 dTDP-L-岩藻糖的生物合成对于许多人类致病菌的生存力和毒力至关重要,包括化脓性链球菌(A 组链球菌;GAS)、变异链球菌和结核分枝杆菌。链球菌病原体需要 dTDP-L-岩藻糖来在其细胞壁中产生结构相似的岩藻糖多糖。通过在变异链球菌中的异源表达,我们证实 GAS RmlB 和 RmlC 分别作为 dTDP-葡萄糖-4,6-脱水酶和 dTDP-4-酮-6-脱氧葡萄糖-3,5-差向异构酶发挥作用,对于 dTDP-L-岩藻糖生物合成至关重要。用含有特定点突变的 GAS RmlB 和 RmlC 进行互补证实了先前鉴定的催化残基的保守性。生物层干涉测量法用于鉴定和确认与 GAS dTDP-岩藻糖生物合成酶 RmlB、RmlC 和 GacA 结合的抑制性先导化合物。鉴定出的化合物之一 Ri03 以 120-410µM 的 IC 抑制 GAS、其他依赖岩藻糖的链球菌病原体以及结核分枝杆菌的生长。重要的是,我们通过用重组岩藻糖生物合成酶进行的生化测定证实,Ri03 以浓度依赖的方式抑制 dTDP-L-岩藻糖的形成。因此,我们得出结论,dTDP-L-岩藻糖生物合成抑制剂,如 Ri03,会影响链球菌和分枝杆菌的生存力,并可作为针对致病菌中 dTDP-L-岩藻糖生物合成的新型抗生素的先导化合物。