Suppr超能文献

2008-2018 年的乳腺 MRI 中的人工智能:系统映射综述。

Artificial Intelligence for Breast MRI in 2008-2018: A Systematic Mapping Review.

机构信息

1 Unit of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milan, Italy.

2 Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy.

出版信息

AJR Am J Roentgenol. 2019 Feb;212(2):280-292. doi: 10.2214/AJR.18.20389. Epub 2019 Jan 2.

Abstract

OBJECTIVE

The purpose of this study is to review literature from the past decade on applications of artificial intelligence (AI) to breast MRI.

MATERIALS AND METHODS

In June 2018, a systematic search of the literature was performed to identify articles on the use of AI in breast MRI. For each article identified, the surname of the first author, year of publication, journal of publication, Web of Science Core Collection journal category, country of affiliation of the first author, study design, dataset, study aim(s), AI methods used, and, when available, diagnostic performance were recorded.

RESULTS

Sixty-seven studies, 58 (87%) of which had a retrospective design, were analyzed. When journal categories were considered, 36% of articles were identified as being included in the radiology and imaging journal category. Contrast-enhanced sequences were used for most AI applications (n = 50; 75%) and, on occasion, were combined with other MRI sequences (n = 8; 12%). Four main clinical aims were addressed: breast lesion classification (n = 36; 54%), image processing (n = 14; 21%), prognostic imaging (n = 9; 13%), and response to neoadjuvant therapy (n = 8; 12%). Artificial neural networks, support vector machines, and clustering were the most frequently used algorithms, accounting for 66%. The performance achieved and the most frequently used techniques were then analyzed according to specific clinical aims. Supervised learning algorithms were primarily used for lesion characterization, with the AUC value from ROC analysis ranging from 0.74 to 0.98 (median, 0.87) and with that from prognostic imaging ranging from 0.62 to 0.88 (median, 0.80), whereas unsupervised learning was mainly used for image processing purposes.

CONCLUSION

Interest in the application of advanced AI methods to breast MRI is growing worldwide. Although this growth is encouraging, the current performance of AI applications in breast MRI means that such applications are still far from being incorporated into clinical practice.

摘要

目的

本研究旨在回顾过去十年中人工智能(AI)在乳腺 MRI 中的应用文献。

材料和方法

2018 年 6 月,进行了系统的文献检索,以确定关于 AI 在乳腺 MRI 中应用的文章。对于确定的每一篇文章,记录第一作者姓氏、发表年份、发表期刊、Web of Science 核心合集期刊类别、第一作者所属国家、研究设计、数据集、研究目的(s)、使用的 AI 方法,以及在可用的情况下,诊断性能。

结果

共分析了 67 项研究,其中 58 项(87%)为回顾性设计。当考虑期刊类别时,36%的文章被认为属于放射学和影像学期刊类别。大多数 AI 应用使用对比增强序列(n = 50;75%),偶尔与其他 MRI 序列结合使用(n = 8;12%)。主要解决了四个主要的临床目标:乳腺病变分类(n = 36;54%)、图像处理(n = 14;21%)、预后成像(n = 9;13%)和新辅助治疗反应(n = 8;12%)。人工神经网络、支持向量机和聚类是最常用的算法,占 66%。然后根据特定的临床目标分析所达到的性能和最常用的技术。监督学习算法主要用于病变特征描述,从 ROC 分析的 AUC 值范围为 0.74 至 0.98(中位数,0.87),从预后成像的 AUC 值范围为 0.62 至 0.88(中位数,0.80),而无监督学习主要用于图像处理目的。

结论

全球对将先进的 AI 方法应用于乳腺 MRI 的兴趣正在增长。尽管这种增长令人鼓舞,但目前 AI 在乳腺 MRI 中的应用性能意味着此类应用仍远未纳入临床实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验