Department of Radiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
Department of Research & Development, Yizhun Medical AI Co. Ltd., Beijing, China.
Eur Radiol. 2022 Jul;32(7):4857-4867. doi: 10.1007/s00330-022-08553-5. Epub 2022 Mar 8.
To build an artificial intelligence (AI) system to classify benign and malignant non-mass enhancement (NME) lesions using maximum intensity projection (MIP) of early post-contrast subtracted breast MR images.
This retrospective study collected 965 pure NME lesions (539 benign and 426 malignant) confirmed by histopathology or follow-up in 903 women. The 754 NME lesions acquired by one MR scanner were randomly split into the training set, validation set, and test set A (482/121/151 lesions). The 211 NME lesions acquired by another MR scanner were used as test set B. The AI system was developed using ResNet-50 with the axial and sagittal MIP images. One senior and one junior radiologist reviewed the MIP images of each case independently and rated its Breast Imaging Reporting and Data System category. The performance of the AI system and the radiologists was evaluated using the area under the receiver operating characteristic curve (AUC).
The AI system yielded AUCs of 0.859 and 0.816 in the test sets A and B, respectively. The AI system achieved comparable performance as the senior radiologist (p = 0.558, p = 0.041) and outperformed the junior radiologist (p < 0.001, p = 0.009) in both test sets A and B. After AI assistance, the AUC of the junior radiologist increased from 0.740 to 0.862 in test set A (p < 0.001) and from 0.732 to 0.843 in test set B (p < 0.001).
Our MIP-based AI system yielded good applicability in classifying NME lesions in breast MRI and can assist the junior radiologist achieve better performance.
• Our MIP-based AI system yielded good applicability in the dataset both from the same and a different MR scanner in predicting malignant NME lesions. • The AI system achieved comparable diagnostic performance with the senior radiologist and outperformed the junior radiologist. • This AI system can assist the junior radiologist achieve better performance in the classification of NME lesions in MRI.
构建一个人工智能(AI)系统,使用早期对比后减影乳腺磁共振成像的最大强度投影(MIP)对良性和恶性非肿块强化(NME)病变进行分类。
本回顾性研究共纳入 903 名女性患者的 965 个纯 NME 病变(539 个良性和 426 个恶性),这些病变均经组织病理学或随访证实。由一台磁共振扫描仪采集的 754 个 NME 病变随机分为训练集、验证集和测试集 A(482/121/151 个病变)。由另一台磁共振扫描仪采集的 211 个 NME 病变作为测试集 B。该 AI 系统使用 ResNet-50 并结合轴位和矢状位 MIP 图像进行开发。一位资深和一位初级放射科医生分别独立对每个病例的 MIP 图像进行回顾,并对其乳腺影像报告和数据系统(BI-RADS)分类进行评分。使用受试者工作特征曲线(ROC)下面积(AUC)评估 AI 系统和放射科医生的性能。
AI 系统在测试集 A 和 B 中的 AUC 分别为 0.859 和 0.816。AI 系统在两个测试集 A 和 B 中的表现均与资深放射科医生相当(p = 0.558,p = 0.041),优于初级放射科医生(p < 0.001,p = 0.009)。在 AI 辅助下,初级放射科医生在测试集 A 中的 AUC 从 0.740 增加到 0.862(p < 0.001),在测试集 B 中的 AUC 从 0.732 增加到 0.843(p < 0.001)。
我们基于 MIP 的 AI 系统在分类乳腺 MRI 中的 NME 病变方面具有良好的适用性,可辅助初级放射科医生获得更好的性能。
我们基于 MIP 的 AI 系统在预测恶性 NME 病变方面,在来自同一台和不同磁共振扫描仪的数据集均具有良好的适用性。
AI 系统的诊断性能与资深放射科医生相当,优于初级放射科医生。
该 AI 系统可以帮助初级放射科医生在 MRI 中更好地对 NME 病变进行分类。