Rondon Ronald E, Wilson Corey J
School of Chemical & Biomolecular Engineering , Georgia Institute of Technology , 311 Ferst Drive , Atlanta , Georgia 30332 , United States.
ACS Synth Biol. 2019 Feb 15;8(2):307-317. doi: 10.1021/acssynbio.8b00324. Epub 2019 Jan 20.
The lactose repressor, LacI (I), is an archetypal transcription factor that has been a workhorse in many synthetic genetic networks. LacI represses gene expression (apo ligand) and is induced upon binding of the ligand isopropyl β-d-1-thiogalactopyranoside (IPTG). Recently, laboratory evolution was used to confer inverted function in the native LacI topology resulting in anti-LacI (antilac) function (I), where IPTG binding results in gene suppression. Here we engineered 46 antilacs with alternate DNA binding function (I). Phenotypically, I transcription factors are the inverse of wild-type I function and possess alternate DNA recognition (ADR). This collection of bespoke I bind orthogonally to disparate non-natural operator DNA sequences and suppress gene expression in the presence of IPTG. This new class of I gene regulators were designed modularly via the systematic pairing of nine alternate allosteric regulatory cores with six alternate DNA binding domains that interact with complementary synthetic operator DNA sequences. The 46 I identified in this study are also orthogonal to the naturally occurring operator O. Finally, a demonstration of full orthogonality was achieved via the construction of synthetic genetic toggle switches composed of two nonsynonymous unit pair operations that control two distinct fluorescent outputs. This new class of I transcription factors will facilitate the expansion of the computational capacity of engineered gene circuits, via the scalable increase in the control over the number of gene outputs by way of the expansion of the number of unique transcription factors (or systems of transcription factors) that can simultaneously regulate one or more promoter(s).
乳糖阻遏蛋白LacI(I)是一种典型的转录因子,在许多合成遗传网络中发挥着重要作用。LacI在无配体(脱辅基配体)时抑制基因表达,而在与配体异丙基-β-D-1-硫代半乳糖苷(IPTG)结合后被诱导。最近,通过实验室进化赋予了天然LacI拓扑结构反向功能,从而产生了抗LacI(antilac)功能(I),即IPTG结合导致基因抑制。在此,我们设计了46种具有交替DNA结合功能的抗LacI蛋白(I)。从表型上看,I转录因子的功能与野生型I相反,并具有交替DNA识别(ADR)能力。这一系列定制的I蛋白与不同的非天然操纵子DNA序列正交结合,并在IPTG存在时抑制基因表达。这类新型I基因调控因子是通过将九个交替的变构调节核心与六个交替的DNA结合结构域进行系统配对而模块化设计的,这些结构域与互补的合成操纵子DNA序列相互作用。本研究中鉴定出的46种I蛋白也与天然存在的操纵子O正交。最后,通过构建由两个非同义单元对操作组成的合成遗传拨动开关来控制两个不同的荧光输出,实现了完全正交性的证明。这类新型I转录因子将通过增加可同时调节一个或多个启动子的独特转录因子(或转录因子系统)的数量,从而可扩展地增加对基因输出数量的控制,促进工程基因回路计算能力的扩展。