Suppr超能文献

述评:社会暴露的因果推断。

Commentary: Causal Inference for Social Exposures.

机构信息

Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec H3A 1A2, Canada; email:

出版信息

Annu Rev Public Health. 2019 Apr 1;40:7-21. doi: 10.1146/annurev-publhealth-040218-043735. Epub 2019 Jan 2.

Abstract

Social epidemiology seeks to describe and quantify the causal effects of social institutions, interactions, and structures on human health. To accomplish this task, we define exposures as treatments and posit populations exposed or unexposed to these well-defined regimens. This inferential structure allows us to unambiguously estimate and interpret quantitative causal parameters and to investigate how these may be affected by biases such as confounding. This paradigm has been challenged recently by some critics who favor broadening the exposures that may be studied beyond treatments to also consider states. Defining the exposure protocol of an observational study is a continuum of specificity, and one may choose to loosen this definition, incurring the cost of causal parameters that become commensurately more vague. The advantages and disadvantages of broader versus narrower definitions of exposure are matters of continuing debate in social epidemiology as in other branches of epidemiology.

摘要

社会流行病学旨在描述和量化社会制度、相互作用和结构对人类健康的因果影响。为了完成这项任务,我们将暴露定义为治疗,并假设人群接触或未接触这些明确的方案。这种推理结构使我们能够明确估计和解释定量因果参数,并研究这些参数如何受到混杂等偏差的影响。这一范式最近受到了一些批评者的质疑,他们赞成将可研究的暴露范围从治疗扩大到还包括状态。定义观察性研究的暴露方案是一个连续的特异性,人们可以选择放宽这一定义,从而导致因果参数变得更加模糊。在社会流行病学以及其他流行病学分支中,更广泛和更狭义的暴露定义的优缺点仍然是一个持续争论的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验