Suppr超能文献

基于反事实的因果推断。

Causal inference based on counterfactuals.

作者信息

Höfler M

机构信息

Clinical Psychology and Epidemiology, Max Planck Institute of Psychiatry, Munich, Germany.

出版信息

BMC Med Res Methodol. 2005 Sep 13;5:28. doi: 10.1186/1471-2288-5-28.

Abstract

BACKGROUND

The counterfactual or potential outcome model has become increasingly standard for causal inference in epidemiological and medical studies.

DISCUSSION

This paper provides an overview on the counterfactual and related approaches. A variety of conceptual as well as practical issues when estimating causal effects are reviewed. These include causal interactions, imperfect experiments, adjustment for confounding, time-varying exposures, competing risks and the probability of causation. It is argued that the counterfactual model of causal effects captures the main aspects of causality in health sciences and relates to many statistical procedures.

SUMMARY

Counterfactuals are the basis of causal inference in medicine and epidemiology. Nevertheless, the estimation of counterfactual differences pose several difficulties, primarily in observational studies. These problems, however, reflect fundamental barriers only when learning from observations, and this does not invalidate the counterfactual concept.

摘要

背景

反事实或潜在结果模型在流行病学和医学研究的因果推断中已日益成为标准方法。

讨论

本文对反事实及相关方法进行了概述。回顾了估计因果效应时的各种概念性和实际问题。这些问题包括因果交互作用、不完美实验、混杂因素调整、随时间变化的暴露因素、竞争风险以及因果关系概率。有人认为,因果效应的反事实模型抓住了健康科学中因果关系的主要方面,并与许多统计程序相关。

总结

反事实是医学和流行病学中因果推断的基础。然而,反事实差异的估计存在若干困难,主要存在于观察性研究中。不过,这些问题仅在从观察中学习时才反映出基本障碍,这并不使反事实概念无效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aefd/1239917/060372011bb2/1471-2288-5-28-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验