Suppr超能文献

语境探索器:高通量筛选中空间组织蛋白质表达的分析。

Context-explorer: Analysis of spatially organized protein expression in high-throughput screens.

机构信息

Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.

The Donnelly Centre, University of Toronto, Toronto, ON, Canada.

出版信息

PLoS Comput Biol. 2019 Jan 2;15(1):e1006384. doi: 10.1371/journal.pcbi.1006384. eCollection 2019 Jan.

Abstract

A growing body of evidence highlights the importance of the cellular microenvironment as a regulator of phenotypic and functional cellular responses to perturbations. We have previously developed cell patterning techniques to control population context parameters, and here we demonstrate context-explorer (CE), a software tool to improve investigation cell fate acquisitions through community level analyses. We demonstrate the capabilities of CE in the analysis of human and mouse pluripotent stem cells (hPSCs, mPSCs) patterned in colonies of defined geometries in multi-well plates. CE employs a density-based clustering algorithm to identify cell colonies. Using this automatic colony classification methodology, we reach accuracies comparable to manual colony counts in a fraction of the time, both in micropatterned and unpatterned wells. Classifying cells according to their relative position within a colony enables statistical analysis of spatial organization in protein expression within colonies. When applied to colonies of hPSCs, our analysis reveals a radial gradient in the expression of the transcription factors SOX2 and OCT4. We extend these analyses to colonies of different sizes and shapes and demonstrate how the metrics derived by CE can be used to asses the patterning fidelity of micropatterned plates. We have incorporated a number of features to enhance the usability and utility of CE. To appeal to a broad scientific community, all of the software's functionality is accessible from a graphical user interface, and convenience functions for several common data operations are included. CE is compatible with existing image analysis programs such as CellProfiler and extends the analytical capabilities already provided by these tools. Taken together, CE facilitates investigation of spatially heterogeneous cell populations for fundamental research and drug development validation programs.

摘要

越来越多的证据强调了细胞微环境作为调节细胞对干扰的表型和功能反应的重要性。我们之前开发了细胞图案化技术来控制群体环境参数,在这里我们展示了 Context-Explorer(CE),这是一种软件工具,可通过社区级分析来改进细胞命运获取的研究。我们展示了 CE 在分析人类和小鼠多能干细胞(hPSCs、mPSCs)在多孔板中具有明确定义几何形状的菌落中的应用。CE 采用基于密度的聚类算法来识别细胞菌落。使用这种自动菌落分类方法,我们以一小部分时间达到了与手动菌落计数相当的准确性,无论是在微图案化还是非图案化的孔中。根据细胞在菌落中的相对位置对其进行分类,可以对菌落中蛋白质表达的空间组织进行统计分析。当应用于 hPSC 菌落时,我们的分析揭示了转录因子 SOX2 和 OCT4 表达的径向梯度。我们将这些分析扩展到不同大小和形状的菌落,并展示了如何使用 CE 得出的度量标准来评估微图案化板的图案化保真度。我们已经集成了许多功能来增强 CE 的可用性和实用性。为了吸引更广泛的科学界,所有软件功能都可以通过图形用户界面访问,并且包括了几个常见数据操作的方便功能。CE 与现有的图像分析程序(如 CellProfiler)兼容,并扩展了这些工具已经提供的分析功能。总之,CE 促进了对空间异质细胞群体的研究,适用于基础研究和药物开发验证项目。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c6b/6331134/e018f5d92730/pcbi.1006384.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验