School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
PLoS Comput Biol. 2022 Feb 25;18(2):e1009907. doi: 10.1371/journal.pcbi.1009907. eCollection 2022 Feb.
The increasing availability of single-cell RNA-sequencing (scRNA-seq) data from various developmental systems provides the opportunity to infer gene regulatory networks (GRNs) directly from data. Herein we describe IQCELL, a platform to infer, simulate, and study executable logical GRNs directly from scRNA-seq data. Such executable GRNs allow simulation of fundamental hypotheses governing developmental programs and help accelerate the design of strategies to control stem cell fate. We first describe the architecture of IQCELL. Next, we apply IQCELL to scRNA-seq datasets from early mouse T-cell and red blood cell development, and show that the platform can infer overall over 74% of causal gene interactions previously reported from decades of research. We will also show that dynamic simulations of the generated GRN qualitatively recapitulate the effects of known gene perturbations. Finally, we implement an IQCELL gene selection pipeline that allows us to identify candidate genes, without prior knowledge. We demonstrate that GRN simulations based on the inferred set yield results similar to the original curated lists. In summary, the IQCELL platform offers a versatile tool to infer, simulate, and study executable GRNs in dynamic biological systems.
单细胞 RNA 测序(scRNA-seq)数据在各种发育系统中的可用性不断增加,为直接从数据中推断基因调控网络(GRN)提供了机会。本文中,我们描述了 IQCELL,这是一个直接从 scRNA-seq 数据中推断、模拟和研究可执行逻辑 GRN 的平台。这种可执行的 GRN 允许模拟控制发育程序的基本假设,并有助于加速设计控制干细胞命运的策略。我们首先描述了 IQCELL 的架构。接下来,我们将 IQCELL 应用于来自早期小鼠 T 细胞和红细胞发育的 scRNA-seq 数据集,并表明该平台可以推断出以前几十年研究中报道的超过 74%的因果基因相互作用。我们还将展示生成的 GRN 的动态模拟定性地再现了已知基因扰动的影响。最后,我们实现了一个 IQCELL 基因选择管道,使我们能够在没有先验知识的情况下识别候选基因。我们证明,基于推断出的基因集进行的 GRN 模拟产生的结果与原始的精心挑选的基因列表相似。总之,IQCELL 平台提供了一种通用工具,可用于推断、模拟和研究动态生物系统中的可执行 GRN。