BioQuant-Center for Quantitative Biology, Heidelberg University, 69120, Heidelberg, Germany.
Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, USA.
Sci Rep. 2023 Nov 1;13(1):18868. doi: 10.1038/s41598-023-45190-4.
Local cell densities and positioning within cellular monolayers and stratified epithelia have important implications for cell interactions and the functionality of various biological processes. To analyze the relationship between cell localization and tissue physiology, density-based clustering algorithms, such as DBSCAN, allow for a detailed characterization of the spatial distribution and positioning of individual cells. However, these methods rely on predefined parameters that influence the outcome of the analysis. With varying cell densities in cell cultures or tissues impacting cell sizes and, thus, cellular proximities, these parameters need to be carefully chosen. In addition, standard DBSCAN approaches generally come short in appropriately identifying individual cell positions. We therefore developed three extensions to the standard DBSCAN-algorithm that provide: (i) an automated parameter identification to reliably identify cell clusters, (ii) an improved identification of cluster edges; and (iii) an improved characterization of the relative positioning of cells within clusters. We apply our novel methods, which are provided as a user-friendly OpenSource-software package (DBSCAN-CellX), to cellular monolayers of different cell lines. Thereby, we show the importance of the developed extensions for the appropriate analysis of cell culture experiments to determine the relationship between cell localization and tissue physiology.
细胞在细胞单层和分层上皮中的局部密度和定位对细胞相互作用和各种生物过程的功能具有重要意义。为了分析细胞定位与组织生理学之间的关系,基于密度的聚类算法(如 DBSCAN)可用于详细描述单个细胞的空间分布和定位。然而,这些方法依赖于影响分析结果的预定义参数。在细胞培养物或组织中,细胞密度的变化会影响细胞大小,从而影响细胞之间的接近程度,因此需要仔细选择这些参数。此外,标准的 DBSCAN 方法通常无法正确识别单个细胞的位置。因此,我们对标准 DBSCAN 算法进行了三个扩展,提供了:(i)自动参数识别,以可靠地识别细胞簇;(ii)改进的簇边缘识别;以及(iii)改进的细胞在簇内相对位置的描述。我们将我们的新方法应用于不同细胞系的单层细胞,这些方法作为用户友好的开源软件包(DBSCAN-CellX)提供。由此,我们展示了所开发的扩展对于适当分析细胞培养实验以确定细胞定位与组织生理学之间的关系的重要性。