Suppr超能文献

无辅因子蛋白环境如何降低 O 反应性的势垒。

How a cofactor-free protein environment lowers the barrier to O reactivity.

机构信息

From the Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59715-3400 and.

the Departments of Materials Science and Engineering and.

出版信息

J Biol Chem. 2019 Mar 8;294(10):3661-3669. doi: 10.1074/jbc.RA118.006144. Epub 2019 Jan 2.

Abstract

Molecular oxygen (O)-utilizing enzymes are among the most important in biology. The abundance of O, its thermodynamic power, and the benign nature of its end products have raised interest in oxidases and oxygenases for biotechnological applications. Although most O-dependent enzymes have an absolute requirement for an O-activating cofactor, several classes of oxidases and oxygenases accelerate direct reactions between substrate and O using only the protein environment. Nogalamycin monooxygenase (NMO) from is a cofactor-independent enzyme that catalyzes rate-limiting electron transfer between its substrate and O Here, using enzyme-kinetic, cyclic voltammetry, and mutagenesis methods, we demonstrate that NMO initially activates the substrate, lowering its p by 1.0 unit (Δ* = 1.4 kcal mol). We found that the one-electron reduction potential, measured for the deprotonated substrate both inside and outside the protein environment, increases by 85 mV inside NMO, corresponding to a ΔΔ' of 2.0 kcal mol (0.087 eV) and that the activation barrier, Δ, is lowered by 4.8 kcal mol (0.21 eV). Applying the Marcus model, we observed that this suggests a sizable decrease of 28 kcal mol (1.4 eV) in the reorganization energy (λ), which constitutes the major portion of the protein environment's effect in lowering the reaction barrier. A similar role for the protein has been proposed in several cofactor-dependent systems and may reflect a broader trend in O-utilizing proteins. In summary, NMO's protein environment facilitates direct electron transfer, and NMO accelerates rate-limiting electron transfer by strongly lowering the reorganization energy.

摘要

利用分子氧 (O) 的酶是生物学中最重要的酶之一。由于 O 的丰富度、热力学能力以及其终产物的良性性质,氧化酶和加氧酶在生物技术应用中引起了广泛关注。尽管大多数依赖 O 的酶都需要 O 激活辅助因子,但有几类氧化酶和加氧酶仅利用蛋白质环境即可加速底物与 O 之间的直接反应。来自 的诺加霉素单加氧酶 (NMO) 是一种不需要辅助因子的酶,它催化其底物与 O 之间的限速电子转移。在这里,我们使用酶动力学、循环伏安法和突变体方法证明,NMO 最初会激活底物,使其 p 值降低 1.0 个单位(Δ* = 1.4 kcal mol)。我们发现,在蛋白质环境内外测量的去质子化底物的单电子还原电位,在 NMO 内增加 85 mV,对应于 2.0 kcal mol(0.087 eV)的 ΔΔ',并且激活势垒,Δ,降低了 4.8 kcal mol(0.21 eV)。应用 Marcus 模型,我们观察到这表明重组能(λ)有相当大的降低,降低了 28 kcal mol(1.4 eV),这构成了蛋白质环境降低反应势垒的主要部分。蛋白质在几种依赖辅助因子的系统中也发挥了类似的作用,这可能反映了 O 利用蛋白中更广泛的趋势。总之,NMO 的蛋白质环境促进了直接电子转移,并且 NMO 通过强烈降低重组能来加速限速电子转移。

相似文献

1
How a cofactor-free protein environment lowers the barrier to O reactivity.
J Biol Chem. 2019 Mar 8;294(10):3661-3669. doi: 10.1074/jbc.RA118.006144. Epub 2019 Jan 2.
2
Catalytic Mechanism of Nogalamycin Monoxygenase: How Does Nature Synthesize Antibiotics without a Metal Cofactor?
J Phys Chem B. 2018 Dec 6;122(48):10841-10854. doi: 10.1021/acs.jpcb.8b09648. Epub 2018 Nov 19.
3
Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations.
J Biol Chem. 2016 Aug 19;291(34):17816-28. doi: 10.1074/jbc.M116.730051. Epub 2016 Jun 15.
5
Expression, purification and crystallization of the cofactor-independent monooxygenase SnoaB from the nogalamycin biosynthetic pathway.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2009 Mar 1;65(Pt 3):256-9. doi: 10.1107/S1744309109001389. Epub 2009 Feb 14.
6
Discovery of a two-component monooxygenase SnoaW/SnoaL2 involved in nogalamycin biosynthesis.
Chem Biol. 2012 May 25;19(5):638-46. doi: 10.1016/j.chembiol.2012.04.009.
9
Catalysis of electron transfer during activation of O2 by the flavoprotein glucose oxidase.
Proc Natl Acad Sci U S A. 2003 Jan 7;100(1):62-7. doi: 10.1073/pnas.252644599. Epub 2002 Dec 27.
10
Cofactor-free ActVA-Orf6 monooxygenase catalysis proton-coupled electron transfer: a QM/MM study.
Org Biomol Chem. 2022 Jul 20;20(28):5525-5534. doi: 10.1039/d2ob00848c.

引用本文的文献

1
Cofactor-independent C-C bond cleavage reactions catalyzed by the AlpJ family of oxygenases in atypical angucycline biosynthesis.
Beilstein J Org Chem. 2024 May 23;20:1198-1206. doi: 10.3762/bjoc.20.102. eCollection 2024.
2
Cofactorless oxygenases guide anthraquinone-fused enediyne biosynthesis.
Nat Chem Biol. 2024 Feb;20(2):243-250. doi: 10.1038/s41589-023-01476-2. Epub 2023 Nov 9.

本文引用的文献

1
Monooxygenase Substrates Mimic Flavin to Catalyze Cofactorless Oxygenations.
J Biol Chem. 2016 Aug 19;291(34):17816-28. doi: 10.1074/jbc.M116.730051. Epub 2016 Jun 15.
2
Charge-Transfer Dynamics at the α/β Subunit Interface of a Photochemical Ribonucleotide Reductase.
J Am Chem Soc. 2016 Feb 3;138(4):1196-205. doi: 10.1021/jacs.5b09259. Epub 2016 Jan 21.
4
Enzymatic oxidation of methane.
Biochemistry. 2015 Apr 14;54(14):2283-94. doi: 10.1021/acs.biochem.5b00198. Epub 2015 Apr 1.
5
The enigmatic reaction of flavins with oxygen.
Trends Biochem Sci. 2012 Sep;37(9):373-80. doi: 10.1016/j.tibs.2012.06.005. Epub 2012 Jul 20.
6
Oxygen activation in flavoprotein oxidases: the importance of being positive.
Biochemistry. 2012 Apr 3;51(13):2662-9. doi: 10.1021/bi300227d. Epub 2012 Mar 22.
7
Thermochemistry of proton-coupled electron transfer reagents and its implications.
Chem Rev. 2010 Dec 8;110(12):6961-7001. doi: 10.1021/cr100085k. Epub 2010 Oct 6.
8
Electron Flow through Proteins.
Chem Phys Lett. 2009 Nov 24;483(1-3):1-9. doi: 10.1016/j.cplett.2009.10.051.
9
Cofactor-independent oxidases and oxygenases.
Appl Microbiol Biotechnol. 2010 Apr;86(3):791-804. doi: 10.1007/s00253-010-2455-0. Epub 2010 Feb 16.
10
Fundamental signatures of short- and long-range electron transfer for the blue copper protein azurin at Au/SAM junctions.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2757-62. doi: 10.1073/pnas.0910837107. Epub 2010 Feb 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验