Suppr超能文献

隆德人类中脑(LUHMES)神经元细胞系支持单纯疱疹病毒 1 潜伏。

Lund Human Mesencephalic (LUHMES) Neuronal Cell Line Supports Herpes Simplex Virus 1 Latency .

机构信息

Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA.

Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida, USA

出版信息

J Virol. 2019 Mar 5;93(6). doi: 10.1128/JVI.02210-18. Print 2019 Mar 15.

Abstract

Lund human mesencephalic (LUHMES) cells are human embryonic neuronal precursor cells that can be maintained as proliferating cells due to the expression of a tetracycline-regulatable (Tet-off) v- transgene. They can be differentiated to postmitotic neurons by the addition of tetracycline, glial cell-derived neurotrophic factor (GDNF), and dibutyryl cAMP. We demonstrate that these cells can be infected with herpes simplex virus 1 (HSV-1) at a multiplicity of infection (MOI) of 3 with the majority of cells surviving. By 6 days postinfection, there is a loss of lytic gene transcription and an increase in the numbers of neurons that express the latency-associated transcripts (LATs). Importantly, the virus can then be reactivated by the addition of a phosphoinositide 3-kinase inhibitor, which has previously been shown to reactivate HSV-1 in rat neuron cultures. While rodent primary culture neuron systems have been described, these are limited by their lack of scalability, as it is difficult to obtain more than 500,000 neurons to employ for a given experiment. Several recent papers have described a human dorsal root ganglion (DRG) neuron culture model and human induced pleuripotent stem cell (iPSC) neuron culture models that are scalable, but they require that the presence of an antiviral suppression be maintained following HSV-1 infection. The human LUHMES cell model of HSV-1 infection described here may be especially useful for studying HSV-1 latency and reactivation on account of its scalability, its amenability to maintenance of latency without the continual use of antiviral inhibitors, and its latent gene expression profile which mirrors many properties observed , importantly, the heterogeneity of cells expressing the LATs. Herpes simplex virus (HSV) is responsible for significant morbidity in humans due to its ability to cause oral and genital lesions, ocular disease, and encephalitis. While antivirals can attenuate the severity and frequency of disease, there is no vaccine or cure. Understanding the molecular details of HSV latency and reactivation is key to the development of new therapies. One of the difficulties in studying HSV latency has been the need to rely on establishment of latent infections in animal models. While rodent primary neuron culture models have shown promise, they yield relatively small numbers of latently infected neurons for biochemical and molecular analyses. Here we present the use of a human central nervous system (CNS)-derived conditionally proliferating cell line that can be differentiated into mature neurons and latently infected with HSV-1. This model shows promise as a scalable tool to study molecular and biochemical aspects of HSV-1 latency and reactivation in human neurons.

摘要

Lund 人类中脑(LUHMES)细胞是人胚胎神经元前体细胞,由于表达四环素调控(Tet-off)v-转基因,可作为增殖细胞维持。通过添加四环素、胶质细胞源性神经营养因子(GDNF)和双丁酰环腺苷酸(cAMP),可将其分化为有丝分裂后神经元。我们证明,这些细胞可以在感染复数(MOI)为 3 的情况下感染单纯疱疹病毒 1(HSV-1),大多数细胞存活。感染后 6 天,裂解基因转录丧失,表达潜伏相关转录物(LATs)的神经元数量增加。重要的是,通过添加先前已显示可在大鼠神经元培养物中重新激活 HSV-1 的磷酸肌醇 3-激酶抑制剂,可再次激活病毒。虽然已经描述了啮齿动物原代培养神经元系统,但由于难以获得超过 500,000 个神经元用于给定实验,因此这些系统受到限制。最近有几篇论文描述了一种人类背根神经节(DRG)神经元培养模型和人类诱导多能干细胞(iPSC)神经元培养模型,这些模型具有可扩展性,但它们需要在 HSV-1 感染后保持抗病毒抑制的存在。由于其可扩展性、无需持续使用抗病毒抑制剂即可维持潜伏状态的能力以及与其观察到的许多特性相匹配的潜伏基因表达谱,这里描述的 HSV-1 感染人类 LUHMES 细胞模型可能特别有助于研究 HSV-1 潜伏期和再激活,重要的是,表达 LATs 的细胞的异质性。单纯疱疹病毒(HSV)因其能够引起口腔和生殖器病变、眼部疾病和脑炎,导致人类发病率高。虽然抗病毒药物可以减轻疾病的严重程度和频率,但目前尚无疫苗或治愈方法。了解 HSV 潜伏期和再激活的分子细节是开发新疗法的关键。研究 HSV 潜伏期的一个困难是需要依赖于在动物模型中建立潜伏感染。虽然啮齿动物原代神经元培养模型显示出前景,但它们用于生化和分子分析的潜伏感染神经元数量相对较少。在这里,我们介绍了一种人类中枢神经系统(CNS)衍生的条件增殖细胞系的使用,该细胞系可分化为成熟神经元并潜伏感染单纯疱疹病毒 1。这种模型有望成为一种可扩展的工具,用于研究人类神经元中 HSV-1 潜伏期和再激活的分子和生化方面。

相似文献

1
Lund Human Mesencephalic (LUHMES) Neuronal Cell Line Supports Herpes Simplex Virus 1 Latency .
J Virol. 2019 Mar 5;93(6). doi: 10.1128/JVI.02210-18. Print 2019 Mar 15.
8
DLK-Dependent Biphasic Reactivation of Herpes Simplex Virus Latency Established in the Absence of Antivirals.
J Virol. 2022 Jun 22;96(12):e0050822. doi: 10.1128/jvi.00508-22. Epub 2022 May 24.
10
Infectious Herpes Simplex Virus in the Brain Stem Is Correlated with Reactivation in the Trigeminal Ganglia.
J Virol. 2019 Apr 3;93(8). doi: 10.1128/JVI.02209-18. Print 2019 Apr 15.

引用本文的文献

3
Repression of varicella zoster virus gene expression during quiescent infection in the absence of detectable histone deposition.
PLoS Pathog. 2025 Feb 10;21(2):e1012367. doi: 10.1371/journal.ppat.1012367. eCollection 2025 Feb.
4
The opportunities and challenges of epigenetic approaches to manage herpes simplex infections.
Expert Rev Anti Infect Ther. 2024 Dec;22(12):1123-1142. doi: 10.1080/14787210.2024.2420329. Epub 2024 Nov 6.
6
Herpes simplex virus 1 inhibits phosphorylation of RNA polymerase II CTD serine-7.
J Virol. 2024 Oct 22;98(10):e0117824. doi: 10.1128/jvi.01178-24. Epub 2024 Sep 24.
7
Models of Herpes Simplex Virus Latency.
Viruses. 2024 May 8;16(5):747. doi: 10.3390/v16050747.
8
Intimate Relationship Between Stress and Human Alpha‑Herpes Virus 1 (HSV‑1) Reactivation from Latency.
Curr Clin Microbiol Rep. 2023 Dec;10(4):236-245. doi: 10.1007/s40588-023-00202-9. Epub 2023 Jul 27.
9
A viral lncRNA tethers HSV-1 genomes at the nuclear periphery to establish viral latency.
J Virol. 2023 Dec 21;97(12):e0143823. doi: 10.1128/jvi.01438-23. Epub 2023 Nov 22.

本文引用的文献

1
Human iPSC-derived trigeminal neurons lack constitutive TLR3-dependent immunity that protects cortical neurons from HSV-1 infection.
Proc Natl Acad Sci U S A. 2018 Sep 11;115(37):E8775-E8782. doi: 10.1073/pnas.1809853115. Epub 2018 Aug 28.
2
Loss of IGF1R in Human Astrocytes Alters Complex I Activity and Support for Neurons.
Neuroscience. 2018 Oct 15;390:46-59. doi: 10.1016/j.neuroscience.2018.07.029. Epub 2018 Jul 27.
4
Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism.
J Virol. 2017 Nov 14;91(23). doi: 10.1128/JVI.00958-17. Print 2017 Dec 1.
6
Modeling HSV-1 Latency in Human Embryonic Stem Cell-Derived Neurons.
Pathogens. 2017 Jun 8;6(2):24. doi: 10.3390/pathogens6020024.
7
Comparison of three cell-based drug screening platforms for HSV-1 infection.
Antiviral Res. 2017 Jun;142:136-140. doi: 10.1016/j.antiviral.2017.03.016. Epub 2017 Mar 23.
8
Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment.
PLoS Pathog. 2016 Sep 12;12(9):e1005834. doi: 10.1371/journal.ppat.1005834. eCollection 2016 Sep.
9
Alphaherpesvirus Latency: A Dynamic State of Transcription and Reactivation.
Adv Virus Res. 2016;94:53-80. doi: 10.1016/bs.aivir.2015.10.001. Epub 2016 Feb 15.
10
Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.
J Vis Exp. 2016 Feb 17(108):53193. doi: 10.3791/53193.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验