Plaza Ramón G
Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar s/n, Ciudad Universitaria, C.P. 04510, Mexico City, Mexico.
J Math Biol. 2019 May;78(6):1681-1711. doi: 10.1007/s00285-018-1323-x. Epub 2019 Jan 2.
This paper is devoted to the justification of the macroscopic, mean-field nutrient taxis system with doubly degenerate cross-diffusion proposed by Leyva et al. (Phys A 392:5644-5662, 2013) to model the complex spatio-temporal dynamics exhibited by the bacterium Bacillus subtilis during experiments run in vitro. This justification is based on a microscopic description of the movement of individual cells whose changes in velocity (in both speed and orientation) obey a velocity jump process governed by a transport equation of Boltzmann type. For that purpose, the asymptotic method introduced by Hillen and Othmer (SIAM J Appl Math 61:751-775, 2000; SIAM J Appl Math 62:1222-1250, 2002) is applied, which consists of the computation of the leading order term in a regular Hilbert expansion for the solution to the transport equation, under an appropriate parabolic scaling and a first order perturbation of the turning rate of Schnitzer type (Schnitzer in Phys Rev E 48:2553-2568, 1993). The resulting parabolic limit equation at leading order for the bacterial cell density recovers the degenerate nonlinear cross diffusion term and the associated chemotactic drift appearing in the original system of equations. Although the bacterium B. subtilis is used as a prototype, the method and results apply in more generality.
本文致力于证明Leyva等人(《物理A》392:5644 - 5662,2013)提出的具有双重退化交叉扩散的宏观平均场营养趋化系统,该系统用于模拟枯草芽孢杆菌在体外实验中展现出的复杂时空动态。这种证明基于对单个细胞运动的微观描述,其速度(包括速率和方向)变化服从由玻尔兹曼型输运方程控制的速度跳跃过程。为此,应用了Hillen和Othmer(《工业与应用数学学会应用数学杂志》61:751 - 775,2000;《工业与应用数学学会应用数学杂志》62:1222 - 1250,2002)引入的渐近方法,该方法包括在适当的抛物缩放和Schnitzer型转向速率的一阶扰动下,计算输运方程解的正则希尔伯特展开中的主导项。由此得到的细菌细胞密度主导阶抛物极限方程恢复了原始方程组中出现的退化非线性交叉扩散项和相关的趋化漂移。尽管枯草芽孢杆菌被用作原型,但该方法和结果具有更广泛的适用性。