Department of Mathematical Sciences "G. L. Lagrange", Dipartimento di Eccellenza 2018-2022, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
Department of Mathematics "G. Peano", Via Carlo Alberto 10, 10123, Turin, Italy.
J Math Biol. 2020 Jan;80(1-2):373-421. doi: 10.1007/s00285-019-01411-x. Epub 2019 Aug 2.
Cells move by run and tumble, a kind of dynamics in which the cell alternates runs over straight lines and re-orientations. This erratic motion may be influenced by external factors, like chemicals, nutrients, the extra-cellular matrix, in the sense that the cell measures the external field and elaborates the signal eventually adapting its dynamics. We propose a kinetic transport equation implementing a velocity-jump process in which the transition probability takes into account a double bias, which acts, respectively, on the choice of the direction of motion and of the speed. The double bias depends on two different non-local sensing cues coming from the external environment. We analyze how the size of the cell and the way of sensing the environment with respect to the variation of the external fields affect the cell population dynamics by recovering an appropriate macroscopic limit and directly integrating the kinetic transport equation. A comparison between the solutions of the transport equation and of the proper macroscopic limit is also performed.
细胞通过奔跑和翻转来移动,这是一种动态过程,其中细胞在直线上奔跑和重新定向之间交替进行。这种不稳定的运动可能会受到外部因素的影响,例如化学物质、营养物质、细胞外基质等,因为细胞会测量外部场并最终对信号进行处理,从而适应其动力学。我们提出了一种实现速度跳跃过程的运动传输方程,其中过渡概率考虑了双重偏差,分别作用于运动方向和速度的选择。双重偏差取决于来自外部环境的两个不同的非局部感应线索。我们通过恢复适当的宏观极限并直接积分运动传输方程,分析细胞的大小以及细胞感知环境的方式如何影响细胞群体动力学,以适应外部场的变化。我们还对传输方程和适当的宏观极限解之间的比较进行了分析。