Lui Roger, Wang Zhi An
Department of Mathematical Sciences, WPI, 100 Institute Road, Worcester, MA 01609, USA.
J Math Biol. 2010 Nov;61(5):739-61. doi: 10.1007/s00285-009-0317-0.
In this paper, we study the existence and nonexistence of traveling wave solutions for the one-dimensional microscopic and macroscopic chemotaxis models. The microscopic model is based on the velocity jump process of Othmer et al. (SIAM J Appl Math 57:1044-1081, 1997). The macroscopic model, which can be shown to be the parabolic limit of the microscopic model, is the classical Keller-Segel model, (Keller and Segel in J Theor Biol 30:225-234; 377-380, 1971). In both models, the chemosensitivity function is given by the derivative of a potential function, Phi(v), which must be unbounded below at some point for the existence of traveling wave solutions. Thus, we consider two examples: Phi(v) = ln V and Phi(v) = ln[v/(1 - v)]. The mathematical problem reduces to proving the existence or nonexistence of solutions to a nonlinear boundary value problem with variable coefficient on R. The main purpose of this paper is to identify the relationships between the two models through their traveling waves, from which we can observe how information are lost, retained, or created during the transition from the microscopic model to the macroscopic model. Moreover, the underlying biological implications of our results are discussed.
在本文中,我们研究一维微观和宏观趋化模型行波解的存在性与不存在性。微观模型基于奥思默等人(《工业与应用数学学会会刊:应用数学》57:1044 - 1081,1997)的速度跳跃过程。宏观模型可证明是微观模型的抛物型极限,它是经典的凯勒 - 塞格尔模型(凯勒和塞格尔,《理论生物学杂志》30:225 - 234;377 - 380,1971)。在这两个模型中,化学敏感性函数由势函数$\varPhi(v)$的导数给出,对于行波解的存在,$\varPhi(v)$在某点必须无下界。因此,我们考虑两个例子:$\varPhi(v)=\ln v$和$\varPhi(v)=\ln\frac{v}{1 - v}$。数学问题归结为证明实轴上一个变系数非线性边值问题解的存在性或不存在性。本文的主要目的是通过行波来确定这两个模型之间的关系,从中我们可以观察在从微观模型到宏观模型的转变过程中信息是如何丢失、保留或产生的。此外,我们还讨论了结果背后的生物学意义。