Suppr超能文献

基于阻抗的高斯过程在物理和非物理交互中建模人体运动行为。

Impedance-Based Gaussian Processes for Modeling Human Motor Behavior in Physical and Non-Physical Interaction.

出版信息

IEEE Trans Biomed Eng. 2019 Sep;66(9):2499-2511. doi: 10.1109/TBME.2018.2890710. Epub 2019 Jan 1.

Abstract

OBJECTIVE

Modeling of human motor intention plays an essential role in predictively controlling a robotic system in human-robot interaction tasks. In most machine learning techniques, human motor behavior is modeled as a generic stochastic process. However, the integration of a priori knowledge about underlying system structures can provide insights on otherwise unobservable intrinsic states that yield the superior prediction performance and increased generalization capabilities.

METHODS

We present a novel method for modeling human motor behavior that explicitly includes a neuroscientifically supported model of human motor control, in which the dynamics of the human arm are modeled by a mechanical impedance that tracks a latent desired trajectory. We adopt a Bayesian setting by defining Gaussian process (GP) priors for the impedance elements and the latent desired trajectory. This enables exploitation of a priori human arm impedance knowledge for regression of interaction forces through inference of a latent desired human trajectory.

RESULTS

The method is validated using simulated data, with particular focus on effects of GP prior parameterization and intention estimation capabilities. The superior prediction performance is shown with respect to a naive GP prior. An experiment with human participants evaluates generalization capabilities and effects of training data sparsity.

CONCLUSION

We derive the correlations of an impedance-based GP model of human motor behavior that exploits a priori knowledge.

SIGNIFICANCE

The model effectively predicts interaction forces by inferring a latent desired human trajectory in previously observed as well as unobserved regions of the input space.

摘要

目的

在人机交互任务中,对人类运动意图进行建模对于预测性地控制机器人系统至关重要。在大多数机器学习技术中,人类运动行为被建模为通用随机过程。然而,整合关于潜在系统结构的先验知识可以提供对不可观测的内在状态的深入了解,从而实现卓越的预测性能和增强的泛化能力。

方法

我们提出了一种新的人类运动行为建模方法,该方法明确包含了一种经过神经科学支持的人类运动控制模型,其中人类手臂的动力学通过跟踪潜在期望轨迹的机械阻抗来建模。我们通过为阻抗元素和潜在期望轨迹定义高斯过程 (GP) 先验来采用贝叶斯设置。这使得可以通过推断潜在的期望人类轨迹来回归交互力,从而利用人类手臂阻抗的先验知识。

结果

该方法使用模拟数据进行了验证,特别关注 GP 先验参数化和意图估计能力的影响。与简单的 GP 先验相比,该方法表现出卓越的预测性能。一项涉及人类参与者的实验评估了泛化能力和训练数据稀疏性的影响。

结论

我们推导出了利用先验知识的基于阻抗的 GP 模型的人类运动行为的相关性。

意义

该模型通过在输入空间的先前观察到和未观察到的区域推断潜在的期望人类轨迹,有效地预测了交互力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验