Suppr超能文献

用于类人运动的控制架构及其在关节式软机器人中的应用

Control Architecture for Human-Like Motion With Applications to Articulated Soft Robots.

作者信息

Angelini Franco, Della Santina Cosimo, Garabini Manolo, Bianchi Matteo, Bicchi Antonio

机构信息

Centro di Ricerca "Enrico Piaggio", Università di Pisa, Pisa, Italy.

Soft Robotics for Human Cooperation and Rehabilitation, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.

出版信息

Front Robot AI. 2020 Sep 11;7:117. doi: 10.3389/frobt.2020.00117. eCollection 2020.

Abstract

Human beings can achieve a high level of motor performance that is still unmatched in robotic systems. These capabilities can be ascribed to two main enabling factors: (i) the physical proprieties of human musculoskeletal system, and (ii) the effectiveness of the control operated by the central nervous system. Regarding point (i), the introduction of compliant elements in the robotic structure can be regarded as an attempt to bridge the gap between the animal body and the robot one. Soft articulated robots aim at replicating the musculoskeletal characteristics of vertebrates. Yet, substantial advancements are still needed under a control point of view, to fully exploit the new possibilities provided by soft robotic bodies. This paper introduces a control framework that ensures natural movements in articulated soft robots, implementing specific functionalities of the human central nervous system, i.e., learning by repetition, after-effect on known and unknown trajectories, anticipatory behavior, its reactive re-planning, and state covariation in precise task execution. The control architecture we propose has a hierarchical structure composed of two levels. The low level deals with dynamic inversion and focuses on trajectory tracking problems. The high level manages the degree of freedom redundancy, and it allows to control the system through a reduced set of variables. The building blocks of this novel control architecture are well-rooted in the control theory, which can furnish an established vocabulary to describe the functional mechanisms underlying the motor control system. The proposed control architecture is validated through simulations and experiments on a bio-mimetic articulated soft robot.

摘要

人类能够实现高水平的运动表现,这在机器人系统中仍然是无与伦比的。这些能力可归因于两个主要促成因素:(i)人类肌肉骨骼系统的物理特性,以及(ii)中枢神经系统操作控制的有效性。关于第一点,在机器人结构中引入柔顺元件可被视为弥合动物身体与机器人身体之间差距的一种尝试。软关节机器人旨在复制脊椎动物的肌肉骨骼特征。然而,从控制角度来看,仍需要取得实质性进展,以充分利用软机器人身体提供的新可能性。本文介绍了一种控制框架,该框架通过实现人类中枢神经系统的特定功能,即重复学习、对已知和未知轨迹的后效、预期行为、其反应性重新规划以及精确任务执行中的状态协变,确保关节式软机器人的自然运动。我们提出的控制架构具有由两级组成的层次结构。低级处理动态逆问题并专注于轨迹跟踪问题。高级管理自由度冗余,并允许通过减少的一组变量来控制系统。这种新颖控制架构的构建模块深深扎根于控制理论,该理论可以提供一套既定的词汇来描述运动控制系统背后的功能机制。通过在仿生机动软机器人上进行的仿真和实验对所提出的控制架构进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc67/7805700/020c5dfb3e78/frobt-07-00117-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验