Suppr超能文献

T4 溶菌酶 L99A 突变体激发态下的苯解离机制。

Mechanisms for Benzene Dissociation through the Excited State of T4 Lysozyme L99A Mutant.

机构信息

Schrödinger, Inc., San Diego, California.

Schrödinger, Inc., San Diego, California.

出版信息

Biophys J. 2019 Jan 22;116(2):205-214. doi: 10.1016/j.bpj.2018.09.035. Epub 2018 Dec 8.

Abstract

The atomic-level mechanisms that coordinate ligand release from protein pockets are only known for a handful of proteins. Here, we report results from accelerated molecular dynamics simulations for benzene dissociation from the buried cavity of the T4 lysozyme Leu99Ala mutant (L99A). In these simulations, benzene is released through a previously characterized, sparsely populated room-temperature excited state of the mutant, explaining the coincidence for experimentally measured benzene off rate and apo protein slow-timescale NMR relaxation rates between ground and excited states. The path observed for benzene egress is a multistep ligand migration from the buried cavity to ultimate release through an opening between the F/G-, H-, and I-helices and requires a number of cooperative multiresidue and secondary-structure rearrangements within the C-terminal domain of L99A. These rearrangements are identical to those observed along the ground state to excited state transitions characterized by molecular dynamic simulations run on the Anton supercomputer. Analyses of the molecular properties of the residues lining the egress path suggest that protein surface electrostatic potential may play a role in the release mechanism. Simulations of wild-type T4 lysozyme also reveal that benzene-egress-associated dynamics in the L99A mutant are potentially exaggerations of the substrate-processivity-related dynamics of the wild type.

摘要

目前仅已知少数蛋白质的口袋释放配体的原子水平机制。在此,我们报告了针对 T4 溶菌酶 Leu99Ala 突变体(L99A)埋藏腔中苯解离的加速分子动力学模拟结果。在这些模拟中,苯通过之前确定的、在室温下稀疏存在的突变体激发态释放,这解释了实验测量的苯释放率与apo 蛋白在基态和激发态之间的慢时间标 NMR 弛豫率之间的巧合。观察到的苯逸出路径是配体从埋藏腔到通过 F/G-、H-和 I-螺旋之间的开口最终释放的多步迁移,需要在 L99A 的 C 末端结构域内发生许多协同的多残基和二级结构重排。这些重排与通过在 Anton 超级计算机上运行的分子动力学模拟对激发态到激发态跃迁的特征相同。对沿逸出途径排列的残基的分子性质的分析表明,蛋白质表面静电势可能在释放机制中起作用。对野生型 T4 溶菌酶的模拟也表明,L99A 突变体中与苯逸出相关的动力学可能是野生型与底物进程相关动力学的夸大。

相似文献

1
Mechanisms for Benzene Dissociation through the Excited State of T4 Lysozyme L99A Mutant.
Biophys J. 2019 Jan 22;116(2):205-214. doi: 10.1016/j.bpj.2018.09.035. Epub 2018 Dec 8.
2
Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A.
Biophys J. 2016 Oct 18;111(8):1631-1640. doi: 10.1016/j.bpj.2016.08.041.
3
Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme.
PLoS Comput Biol. 2018 May 18;14(5):e1006180. doi: 10.1371/journal.pcbi.1006180. eCollection 2018 May.
4
Escape of a Small Molecule from Inside T4 Lysozyme by Multiple Pathways.
Biophys J. 2018 Mar 13;114(5):1058-1066. doi: 10.1016/j.bpj.2018.01.014.
5
Studying excited states of proteins by NMR spectroscopy.
Nat Struct Biol. 2001 Nov;8(11):932-5. doi: 10.1038/nsb1101-932.
6
A model binding site for testing scoring functions in molecular docking.
J Mol Biol. 2002 Sep 13;322(2):339-55. doi: 10.1016/s0022-2836(02)00777-5.
8
Computing the binding affinity of a ligand buried deep inside a protein with the hybrid steered molecular dynamics.
Biochem Biophys Res Commun. 2017 Jan 29;483(1):203-208. doi: 10.1016/j.bbrc.2016.12.165. Epub 2016 Dec 26.
9
A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene.
Nature. 1992 Jan 23;355(6358):371-3. doi: 10.1038/355371a0.

引用本文的文献

1
Residence time in drug discovery: current insights and future perspectives.
Pharmacol Rep. 2025 Jun 9. doi: 10.1007/s43440-025-00748-z.
4
Local Xenon-Protein Interaction Produces Global Conformational Change and Allosteric Inhibition in Lysozyme.
Biochemistry. 2023 Jun 6;62(11):1659-1669. doi: 10.1021/acs.biochem.3c00046. Epub 2023 May 16.
6
Automated Path Searching Reveals the Mechanism of Hydrolysis Enhancement by T4 Lysozyme Mutants.
Int J Mol Sci. 2022 Nov 23;23(23):14628. doi: 10.3390/ijms232314628.
7
Energy penalties enhance flexible receptor docking in a model cavity.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2106195118.
8
Ligand unbinding mechanisms and kinetics for T4 lysozyme mutants from τRAMD simulations.
Curr Res Struct Biol. 2021 May 4;3:106-111. doi: 10.1016/j.crstbi.2021.04.001. eCollection 2021.
9
Flexible Fitting of Small Molecules into Electron Microscopy Maps Using Molecular Dynamics Simulations with Neural Network Potentials.
J Chem Inf Model. 2020 May 26;60(5):2591-2604. doi: 10.1021/acs.jcim.9b01167. Epub 2020 Mar 30.
10
De Novo Prediction of Binders and Nonbinders for T4 Lysozyme by gREST Simulations.
J Chem Inf Model. 2019 Sep 23;59(9):3879-3888. doi: 10.1021/acs.jcim.9b00416. Epub 2019 Aug 21.

本文引用的文献

1
Frequency adaptive metadynamics for the calculation of rare-event kinetics.
J Chem Phys. 2018 Aug 21;149(7):072309. doi: 10.1063/1.5024679.
2
Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme.
PLoS Comput Biol. 2018 May 18;14(5):e1006180. doi: 10.1371/journal.pcbi.1006180. eCollection 2018 May.
3
Escape of a Small Molecule from Inside T4 Lysozyme by Multiple Pathways.
Biophys J. 2018 Mar 13;114(5):1058-1066. doi: 10.1016/j.bpj.2018.01.014.
4
Multiple Ligand Unbinding Pathways and Ligand-Induced Destabilization Revealed by WExplore.
Biophys J. 2017 Feb 28;112(4):620-629. doi: 10.1016/j.bpj.2017.01.006.
5
Capturing Invisible Motions in the Transition from Ground to Rare Excited States of T4 Lysozyme L99A.
Biophys J. 2016 Oct 18;111(8):1631-1640. doi: 10.1016/j.bpj.2016.08.041.
7
Aberrant increase of NMR signal in hydrogen exchange experiments. Observation and explanation.
Biochem Biophys Res Commun. 2016 Sep 23;478(3):1185-8. doi: 10.1016/j.bbrc.2016.08.092. Epub 2016 Aug 18.
8
Molecular Basis of Ligand Dissociation from the Adenosine A2A Receptor.
Mol Pharmacol. 2016 May;89(5):485-91. doi: 10.1124/mol.115.102657. Epub 2016 Feb 12.
9
Detecting O2 binding sites in protein cavities.
Sci Rep. 2016 Feb 2;6:20534. doi: 10.1038/srep20534.
10
PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p. Epub 2013 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验