Schrödinger, Inc., San Diego, California.
Schrödinger, Inc., San Diego, California.
Biophys J. 2019 Jan 22;116(2):205-214. doi: 10.1016/j.bpj.2018.09.035. Epub 2018 Dec 8.
The atomic-level mechanisms that coordinate ligand release from protein pockets are only known for a handful of proteins. Here, we report results from accelerated molecular dynamics simulations for benzene dissociation from the buried cavity of the T4 lysozyme Leu99Ala mutant (L99A). In these simulations, benzene is released through a previously characterized, sparsely populated room-temperature excited state of the mutant, explaining the coincidence for experimentally measured benzene off rate and apo protein slow-timescale NMR relaxation rates between ground and excited states. The path observed for benzene egress is a multistep ligand migration from the buried cavity to ultimate release through an opening between the F/G-, H-, and I-helices and requires a number of cooperative multiresidue and secondary-structure rearrangements within the C-terminal domain of L99A. These rearrangements are identical to those observed along the ground state to excited state transitions characterized by molecular dynamic simulations run on the Anton supercomputer. Analyses of the molecular properties of the residues lining the egress path suggest that protein surface electrostatic potential may play a role in the release mechanism. Simulations of wild-type T4 lysozyme also reveal that benzene-egress-associated dynamics in the L99A mutant are potentially exaggerations of the substrate-processivity-related dynamics of the wild type.
目前仅已知少数蛋白质的口袋释放配体的原子水平机制。在此,我们报告了针对 T4 溶菌酶 Leu99Ala 突变体(L99A)埋藏腔中苯解离的加速分子动力学模拟结果。在这些模拟中,苯通过之前确定的、在室温下稀疏存在的突变体激发态释放,这解释了实验测量的苯释放率与apo 蛋白在基态和激发态之间的慢时间标 NMR 弛豫率之间的巧合。观察到的苯逸出路径是配体从埋藏腔到通过 F/G-、H-和 I-螺旋之间的开口最终释放的多步迁移,需要在 L99A 的 C 末端结构域内发生许多协同的多残基和二级结构重排。这些重排与通过在 Anton 超级计算机上运行的分子动力学模拟对激发态到激发态跃迁的特征相同。对沿逸出途径排列的残基的分子性质的分析表明,蛋白质表面静电势可能在释放机制中起作用。对野生型 T4 溶菌酶的模拟也表明,L99A 突变体中与苯逸出相关的动力学可能是野生型与底物进程相关动力学的夸大。