Theoretical Molecular Science Laboratory , RIKEN Cluster for Pioneering Research , Hirosawa 2-1 , Wako , Saitama 351-0198 , Japan.
Laboratory for Biomolecular Function Simulation , RIKEN Center for Biosystems Dynamics Research , 6-7-1 Minatojima-minamimachi , Chuo-ku, Kobe 650-0047 , Japan.
J Chem Inf Model. 2019 Sep 23;59(9):3879-3888. doi: 10.1021/acs.jcim.9b00416. Epub 2019 Aug 21.
Molecular recognition underpins all specific protein-ligand interactions and is essential for biomolecular functions. The prediction of canonical binding poses and distinguishing binders from nonbinders are much sought after goals. Here, we apply the generalized replica exchange with solute tempering method, gREST, combined with a flat-bottom potential to evaluate binder and nonbinder interactions with a T4 lysozyme Leu99Ala mutant. The buried hydrophobic cavity and possibility of coupled conformational changes in this protein make binding predictions difficult. The present gREST simulations, enabling enhanced flexibilities of the ligand and protein residues near the binding site, sample bindings in multiple poses, and correct portrayal of X-ray structures. The free-energy profiles of binders (benzene, ethylbenzene, and -hexylbenzene) are distinct from those of nonbinders (phenol and benzaldehyde). Bindings of the two larger molecules seem to be associated with a structural change toward an excited conformation of the protein, which agrees with experimental findings. The protocol is generally applicable to various proteins having buried cavities with limited access for ligands with different shapes, sizes, and chemical properties.
分子识别是所有特定蛋白质-配体相互作用的基础,对于生物分子功能至关重要。预测规范的结合构象并区分结合物和非结合物是备受关注的目标。在这里,我们应用广义的复制交换与溶质温度化方法(gREST),结合平底势能,评估 T4 溶菌酶 Leu99Ala 突变体的结合物和非结合物相互作用。该蛋白质的埋藏疏水性空腔和可能的偶联构象变化使得结合预测变得困难。本 gREST 模拟能够增强配体和结合位点附近蛋白质残基的灵活性,从而在多个构象中采样结合,并正确描绘 X 射线结构。结合物(苯、乙苯和正己基苯)的自由能分布与非结合物(苯酚和苯甲醛)明显不同。两个较大分子的结合似乎与蛋白质的激发构象的结构变化有关,这与实验结果一致。该方案通常适用于具有埋藏空腔的各种蛋白质,这些空腔对于具有不同形状、大小和化学性质的配体的进入受到限制。