Suppr超能文献

配体高斯加速分子动力学 2(LiGaMD2):改进了结合自由能和结合动力学的计算方法,同时考虑了蛋白质口袋的封闭性。

Ligand Gaussian Accelerated Molecular Dynamics 2 (LiGaMD2): Improved Calculations of Ligand Binding Thermodynamics and Kinetics with Closed Protein Pocket.

机构信息

Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas66047, United States.

出版信息

J Chem Theory Comput. 2023 Feb 14;19(3):733-745. doi: 10.1021/acs.jctc.2c01194. Epub 2023 Jan 27.

Abstract

Ligand binding thermodynamics and kinetics are critical parameters for drug design. However, it has proven challenging to efficiently predict ligand binding thermodynamics and kinetics from molecular simulations due to limited simulation timescales. Protein dynamics, especially in the ligand binding pocket, often plays an important role in ligand binding. Based on our previously developed Ligand Gaussian accelerated molecular dynamics (LiGaMD), here we present LiGaMD2 in which a selective boost potential was applied to both the ligand and protein residues in the binding pocket to improve sampling of ligand binding and dissociation. To validate the performance of LiGaMD2, the T4 lysozyme (T4L) mutants with open and closed pockets bound by different ligands were chosen as model systems. LiGaMD2 could efficiently capture repetitive ligand dissociation and binding within microsecond simulations of all T4L systems. The obtained ligand binding kinetic rates and free energies agreed well with available experimental values and previous modeling results. Therefore, LiGaMD2 provides an improved approach to sample opening of closed protein pockets for ligand dissociation and binding, thereby allowing for efficient calculations of ligand binding thermodynamics and kinetics.

摘要

配体结合热力学和动力学是药物设计的关键参数。然而,由于模拟时间尺度有限,从分子模拟中有效地预测配体结合热力学和动力学一直具有挑战性。蛋白质动力学,特别是在配体结合口袋中,通常在配体结合中起着重要作用。基于我们之前开发的配体高斯加速分子动力学(LiGaMD),在这里我们提出了 LiGaMD2,其中对结合口袋中的配体和蛋白质残基都应用了选择性增强势,以提高配体结合和解离的采样。为了验证 LiGaMD2 的性能,选择 T4 溶菌酶(T4L)突变体作为模型系统,这些突变体的口袋有开放和关闭两种状态,由不同的配体结合。LiGaMD2 可以在所有 T4L 系统的微秒模拟中有效地捕获重复的配体解离和结合。得到的配体结合动力学速率和自由能与可用的实验值和以前的建模结果吻合得很好。因此,LiGaMD2 提供了一种改进的方法来采样封闭蛋白质口袋的开放,以用于配体解离和结合,从而能够有效地计算配体结合热力学和动力学。

相似文献

2
Accelerating Molecular Dynamics Simulations for Drug Discovery.
Methods Mol Biol. 2024;2714:187-202. doi: 10.1007/978-1-0716-3441-7_11.
5
Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD): Characterization of Ligand Binding Thermodynamics and Kinetics.
J Chem Theory Comput. 2020 Sep 8;16(9):5526-5547. doi: 10.1021/acs.jctc.0c00395. Epub 2020 Aug 7.
7
Protein-Protein Interaction-Gaussian Accelerated Molecular Dynamics (PPI-GaMD): Characterization of Protein Binding Thermodynamics and Kinetics.
J Chem Theory Comput. 2022 Mar 8;18(3):1275-1285. doi: 10.1021/acs.jctc.1c00974. Epub 2022 Jan 31.
8
Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives.
Adv Appl Bioinform Chem. 2022 Jan 6;15:1-19. doi: 10.2147/AABC.S247950. eCollection 2022.
9
Gaussian accelerated molecular dynamics (GaMD): principles and applications.
Wiley Interdiscip Rev Comput Mol Sci. 2021 Sep-Oct;11(5). doi: 10.1002/wcms.1521. Epub 2021 Mar 1.
10
Atomic resolution mechanism of ligand binding to a solvent inaccessible cavity in T4 lysozyme.
PLoS Comput Biol. 2018 May 18;14(5):e1006180. doi: 10.1371/journal.pcbi.1006180. eCollection 2018 May.

引用本文的文献

1
Running Gaussian-accelerated Molecular Dynamics Simulations in NAMD [Article v1.0].
Living J Comput Mol Sci. 2025;6(1). doi: 10.33011/livecoms.6.1.3815. Epub 2025 Jul 12.
2
Symmetric Ligand Binding Pathways and Dual-State Bottleneck in [NiFe] Hydrogenases from Unbiased Molecular Dynamics.
J Phys Chem Lett. 2025 Aug 7;16(31):7960-7967. doi: 10.1021/acs.jpclett.5c01673. Epub 2025 Jul 29.
3
Recent Developments in Amber Biomolecular Simulations.
J Chem Inf Model. 2025 Aug 11;65(15):7835-7843. doi: 10.1021/acs.jcim.5c01063. Epub 2025 Jul 29.
4
5
Residence time in drug discovery: current insights and future perspectives.
Pharmacol Rep. 2025 Jun 9. doi: 10.1007/s43440-025-00748-z.
6
Diverse toxins exhibit a common binding mode to the nicotinic acetylcholine receptors.
Biophys J. 2025 Apr 15;124(8):1195-1207. doi: 10.1016/j.bpj.2025.02.022. Epub 2025 Feb 26.
9
Reinforcing Tunnel Network Exploration in Proteins Using Gaussian Accelerated Molecular Dynamics.
J Chem Inf Model. 2024 Aug 26;64(16):6623-6635. doi: 10.1021/acs.jcim.4c00966. Epub 2024 Aug 15.

本文引用的文献

1
Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective.
Front Mol Biosci. 2022 Jun 8;9:899805. doi: 10.3389/fmolb.2022.899805. eCollection 2022.
2
Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications.
J Chem Theory Comput. 2022 Jun 14;18(6):3873-3893. doi: 10.1021/acs.jctc.1c01194. Epub 2022 Jun 2.
3
Protein-Protein Interaction-Gaussian Accelerated Molecular Dynamics (PPI-GaMD): Characterization of Protein Binding Thermodynamics and Kinetics.
J Chem Theory Comput. 2022 Mar 8;18(3):1275-1285. doi: 10.1021/acs.jctc.1c00974. Epub 2022 Jan 31.
4
Binding Analysis Using Accelerated Molecular Dynamics Simulations and Future Perspectives.
Adv Appl Bioinform Chem. 2022 Jan 6;15:1-19. doi: 10.2147/AABC.S247950. eCollection 2022.
5
Gaussian accelerated molecular dynamics (GaMD): principles and applications.
Wiley Interdiscip Rev Comput Mol Sci. 2021 Sep-Oct;11(5). doi: 10.1002/wcms.1521. Epub 2021 Mar 1.
6
Ligand unbinding mechanisms and kinetics for T4 lysozyme mutants from τRAMD simulations.
Curr Res Struct Biol. 2021 May 4;3:106-111. doi: 10.1016/j.crstbi.2021.04.001. eCollection 2021.
7
Kinetics-Driven Drug Design Strategy for Next-Generation Acetylcholinesterase Inhibitors to Clinical Candidate.
J Med Chem. 2021 Feb 25;64(4):1844-1855. doi: 10.1021/acs.jmedchem.0c01863. Epub 2021 Feb 11.
8
Wepy: A Flexible Software Framework for Simulating Rare Events with Weighted Ensemble Resampling.
ACS Omega. 2020 Dec 2;5(49):31608-31623. doi: 10.1021/acsomega.0c03892. eCollection 2020 Dec 15.
10
Efficient Refinement and Free Energy Scoring of Predicted Protein-Protein Complexes Using Replica Exchange with Repulsive Scaling.
J Chem Inf Model. 2020 Nov 23;60(11):5552-5562. doi: 10.1021/acs.jcim.0c00853. Epub 2020 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验