文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

比较自动化分割和手动追踪在估计缺血性脑卒中患者和健康对照组参与者的海马体积中的应用。

A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants.

机构信息

The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.

The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia.

出版信息

Neuroimage Clin. 2019;21:101581. doi: 10.1016/j.nicl.2018.10.019. Epub 2018 Oct 22.


DOI:10.1016/j.nicl.2018.10.019
PMID:30606656
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6411582/
Abstract

Manual quantification of the hippocampal atrophy state and rate is time consuming and prone to poor reproducibility, even when performed by neuroanatomical experts. The automation of hippocampal segmentation has been investigated in normal aging, epilepsy, and in Alzheimer's disease. Our first goal was to compare manual and automated hippocampal segmentation in ischemic stroke and to, secondly, study the impact of stroke lesion presence on hippocampal volume estimation. We used eight automated methods to segment T1-weighted MR images from 105 ischemic stroke patients and 39 age-matched controls sampled from the Cognition And Neocortical Volume After Stroke (CANVAS) study. The methods were: AdaBoost, Atlas-based Hippocampal Segmentation (ABHS) from the IDeALab, Computational Anatomy Toolbox (CAT) using 3 atlas variants (Hammers, LPBA40 and Neuromorphometics), FIRST, FreeSurfer v5.3, and FreeSurfer v6.0-Subfields. A number of these methods were employed to re-segment the T1 images for the stroke group after the stroke lesions were masked (i.e., removed). The automated methods were assessed on eight measures: process yield (i.e. segmentation success rate), correlation (Pearson's R and Shrout's ICC), concordance (Lin's RC and Kandall's W), slope 'a' of best-fit line from correlation plots, percentage of outliers from Bland-Altman plots, and significance of control-stroke difference. We eliminated the redundant measures after analysing between-measure correlations using Spearman's rank correlation. We ranked the automated methods based on the sum of the remaining non-redundant measures where each measure ranged between 0 and 1. Subfields attained an overall score of 96.3%, followed by AdaBoost (95.0%) and FIRST (94.7%). CAT using the LPBA40 atlas inflated hippocampal volumes the most, while the Hammers atlas returned the smallest volumes overall. FIRST (p = 0.014), FreeSurfer v5.3 (p = 0.007), manual tracing (p = 0.049), and CAT using the Neuromorphometics atlas (p = 0.017) all showed a significantly reduced hippocampal volume mean for the stroke group compared to control at three months. Moreover, masking of the stroke lesions prior to segmentation resulted in hippocampal volumes which agreed less with manual tracing. These findings recommend an automated segmentation without lesion masking as a more reliable procedure for the estimation of hippocampal volume in ischemic stroke.

摘要

手动量化海马体萎缩状态和速度既耗时又容易重现性差,即使由神经解剖学专家进行也是如此。海马体分割的自动化已经在正常衰老、癫痫和阿尔茨海默病中进行了研究。我们的第一个目标是比较缺血性中风患者的手动和自动海马体分割,并研究中风病灶的存在对海马体体积估计的影响。我们使用了八种自动方法来分割来自 Cognition And Neocortical Volume After Stroke (CANVAS)研究的 105 名缺血性中风患者和 39 名年龄匹配的对照者的 T1 加权磁共振图像。这些方法是:AdaBoost、来自 IDeALab 的基于图谱的海马体分割 (ABHS)、使用 3 个图谱变体 (Hammers、LPBA40 和 Neuromorphometrics) 的计算解剖工具箱 (CAT)、FIRST、FreeSurfer v5.3 和 FreeSurfer v6.0-Subfields。其中一些方法被用于在中风病灶被屏蔽(即被移除)后对中风组的 T1 图像进行重新分割。自动方法通过八种措施进行评估:过程产量(即分割成功率)、相关性(Pearson's R 和 Shrout 的 ICC)、一致性(Lin 的 RC 和 Kandall 的 W)、相关图中最佳拟合线的斜率 'a'、Bland-Altman 图中的离群值百分比,以及对照-中风差异的显著性。我们使用 Spearman 等级相关分析对各测量值之间的相关性进行分析后,消除了冗余的测量值。我们根据剩余非冗余测量值的总和对自动方法进行排名,其中每个测量值的范围在 0 到 1 之间。子领域的总得分达到 96.3%,其次是 AdaBoost(95.0%)和 FIRST(94.7%)。CAT 使用 LPBA40 图谱增加了海马体的体积,而 Hammers 图谱则总体上返回了最小的体积。FIRST(p=0.014)、FreeSurfer v5.3(p=0.007)、手动追踪(p=0.049)和使用 Neuromorphometrics 图谱的 CAT(p=0.017)都显示中风组的海马体体积平均值在三个月时明显低于对照组。此外,在分割之前屏蔽中风病灶会导致与手动追踪的结果不太一致。这些发现表明,在缺血性中风中,不进行病灶掩蔽的自动分割是一种更可靠的海马体体积估计方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/866915342ab8/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/dcf5f222aac9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/adc3b9374220/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/5237e1c08013/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/8dd9d48522de/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/c9d4e90e3f1e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/07a0e45b4e45/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/0a79ec2464bd/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/e0a7a65a1eb5/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/866915342ab8/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/dcf5f222aac9/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/adc3b9374220/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/5237e1c08013/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/8dd9d48522de/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/c9d4e90e3f1e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/07a0e45b4e45/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/0a79ec2464bd/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/e0a7a65a1eb5/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90b6/6411582/866915342ab8/gr9.jpg

相似文献

[1]
A comparison of automated segmentation and manual tracing in estimating hippocampal volume in ischemic stroke and healthy control participants.

Neuroimage Clin. 2018-10-22

[2]
Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates.

Neuroimage. 2014-4-29

[3]
Effects of age and Alzheimer's disease on hippocampal subfields: comparison between manual and FreeSurfer volumetry.

Hum Brain Mapp. 2015-2

[4]
Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST.

Neuroimage. 2014-5-15

[5]
Assessment of longitudinal hippocampal atrophy in the first year after ischemic stroke using automatic segmentation techniques.

Neuroimage Clin. 2019-10-22

[6]
Automated 3D segmentation of hippocampus based on active appearance model of brain MR images for the early diagnosis of Alzheimer's disease.

Minerva Med. 2014-4

[7]
A comparative study of segmentation techniques for the quantification of brain subcortical volume.

Brain Imaging Behav. 2018-12

[8]
Accuracy and bias of automatic hippocampal segmentation in children and adolescents.

Brain Struct Funct. 2018-12-3

[9]
Hippocampus and amygdala volumes from magnetic resonance images in children: Assessing accuracy of FreeSurfer and FSL against manual segmentation.

Neuroimage. 2016-4-1

[10]
Comparison of manual and automated determination of hippocampal volumes in MCI and early AD.

Brain Imaging Behav. 2010-3

引用本文的文献

[1]
Post mortem cadaveric and imaging mapping analysis of the influence of cochlear implants on cMRI assessment regarding implant positioning and artifact formation.

Eur Arch Otorhinolaryngol. 2025-6

[2]
Alterations of contralesional hippocampal subfield volumes and relations to cognitive functions in patients with unilateral stroke.

Brain Behav. 2024-8

[3]
CAT: a computational anatomy toolbox for the analysis of structural MRI data.

Gigascience. 2024-1-2

[4]
Automated hippocampal segmentation algorithms evaluated in stroke patients.

Sci Rep. 2023-7-20

[5]
Nomograms of human hippocampal volume shifted by polygenic scores.

Elife. 2022-8-8

[6]
Grey and white matter atrophy 1 year after stroke aphasia.

Brain Commun. 2022-3-17

[7]
Norms for Automatic Estimation of Hippocampal Atrophy and a Step Forward for Applicability to the Italian Population.

Front Neurosci. 2021-6-28

[8]
Hippocampal subfield volumes are associated with verbal memory after first-ever ischemic stroke.

Alzheimers Dement (Amst). 2021-6-12

[9]
Machine Learning for Diagnosis of AD and Prediction of MCI Progression From Brain MRI Using Brain Anatomical Analysis Using Diffeomorphic Deformation.

Front Neurol. 2021-2-5

[10]
Cortical Thickness Estimation in Individuals With Cerebral Small Vessel Disease, Focal Atrophy, and Chronic Stroke Lesions.

Front Neurosci. 2020-12-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索