Suppr超能文献

蓝斑追踪预测误差以优化认知灵活性:主动推理模型。

Locus Coeruleus tracking of prediction errors optimises cognitive flexibility: An Active Inference model.

机构信息

School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom.

Wellcome Trust Centre for Neuroimaging, UCL, London, United Kingdom.

出版信息

PLoS Comput Biol. 2019 Jan 4;15(1):e1006267. doi: 10.1371/journal.pcbi.1006267. eCollection 2019 Jan.

Abstract

The locus coeruleus (LC) in the pons is the major source of noradrenaline (NA) in the brain. Two modes of LC firing have been associated with distinct cognitive states: changes in tonic rates of firing are correlated with global levels of arousal and behavioural flexibility, whilst phasic LC responses are evoked by salient stimuli. Here, we unify these two modes of firing by modelling the response of the LC as a correlate of a prediction error when inferring states for action planning under Active Inference (AI). We simulate a classic Go/No-go reward learning task and a three-arm 'explore/exploit' task and show that, if LC activity is considered to reflect the magnitude of high level 'state-action' prediction errors, then both tonic and phasic modes of firing are emergent features of belief updating. We also demonstrate that when contingencies change, AI agents can update their internal models more quickly by feeding back this state-action prediction error-reflected in LC firing and noradrenaline release-to optimise learning rate, enabling large adjustments over short timescales. We propose that such prediction errors are mediated by cortico-LC connections, whilst ascending input from LC to cortex modulates belief updating in anterior cingulate cortex (ACC). In short, we characterise the LC/ NA system within a general theory of brain function. In doing so, we show that contrasting, behaviour-dependent firing patterns are an emergent property of the LC that translates state-action prediction errors into an optimal balance between plasticity and stability.

摘要

脑桥中的蓝斑核(LC)是大脑中去甲肾上腺素(NA)的主要来源。LC 的两种放电模式与不同的认知状态相关联:紧张率的变化与全局唤醒水平和行为灵活性相关,而 LC 的相位反应则由显著刺激引发。在这里,我们通过将 LC 的响应建模为主动推理(AI)下进行动作规划时推断状态的预测误差的相关物,将这两种放电模式统一起来。我们模拟了一个经典的 Go/No-go 奖励学习任务和一个三臂“探索/利用”任务,并表明,如果将 LC 活动视为反映高水平“状态-动作”预测误差的大小,那么紧张和相位两种放电模式都是信念更新的涌现特征。我们还证明,当条件发生变化时,AI 代理可以通过反馈这种反映在 LC 放电和去甲肾上腺素释放中的状态-动作预测误差来更快地更新其内部模型,以优化学习率,从而在短时间内实现大的调整。我们提出,这种预测误差是由皮质 LC 连接介导的,而 LC 到皮质的上行输入调节前扣带皮层(ACC)中的信念更新。简而言之,我们在大脑功能的一般理论中描述了 LC/NA 系统。通过这样做,我们表明,对比鲜明的、行为依赖的放电模式是 LC 的一个涌现特性,它将状态-动作预测误差转化为可塑性和稳定性之间的最佳平衡。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/876f/6334975/4c81960dc65b/pcbi.1006267.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验