Suppr超能文献

情感状态在计算精神病学中的作用。

The role of affective states in computational psychiatry.

作者信息

Benrimoh David, Smith Ryan, Diaconescu Andreea O, Friesen Timothy, Jalali Sara, Mikus Nace, Gschwandtner Laura, Gandhi Jay, Horga Guillermo, Powers Albert

机构信息

Department of Psychiatry, McGill University, Montreal, Quebec, Canada.

Douglas Research Center, Montreal, Quebec, Canada.

出版信息

Int J Neuropsychopharmacol. 2025 Aug 1;28(8). doi: 10.1093/ijnp/pyaf049.

Abstract

Studying psychiatric illness has often been limited by difficulties in connecting symptoms and behavior to neurobiology. Computational psychiatry approaches promise to bridge this gap by providing formal accounts of the latent information processing changes that underlie the development and maintenance of psychiatric phenomena. Models based on these theories generate individual-level parameter estimates which can then be tested for relationships to neurobiology. In this review, we explore computational modelling approaches to one key aspect of health and illness: affect. We discuss strengths and limitations of key approaches to modelling affect, with a focus on reinforcement learning, active inference, the hierarchical gaussian filter, and drift-diffusion models. We find that, in this literature, affect is an important source of modulation in decision making, and has a bidirectional influence on how individuals infer both internal and external states. Highlighting the potential role of affect in information processing changes underlying symptom development, we extend an existing model of psychosis, where affective changes are influenced by increasing cortical noise and consequent increases in either perceived environmental instability or expected noise in sensory input, becoming part of a self-reinforcing process generating negatively valenced, over-weighted priors underlying positive symptom development. We then provide testable predictions from this model at computational, neurobiological, and phenomenological levels of description.

摘要

对精神疾病的研究常常受到将症状和行为与神经生物学联系起来的困难所限制。计算精神病学方法有望通过提供对作为精神现象发展和维持基础的潜在信息处理变化的形式化描述来弥合这一差距。基于这些理论的模型生成个体水平的参数估计值,然后可以对这些估计值与神经生物学的关系进行测试。在这篇综述中,我们探讨了针对健康和疾病的一个关键方面——情感——的计算建模方法。我们讨论了情感建模关键方法的优点和局限性,重点关注强化学习、主动推理、分层高斯滤波器和漂移扩散模型。我们发现,在这一文献中,情感是决策过程中一个重要的调节源,并且对个体如何推断内部和外部状态具有双向影响。突出情感在症状发展基础的信息处理变化中的潜在作用,我们扩展了一个现有的精神病模型,其中情感变化受到皮质噪声增加以及随之而来的感知环境不稳定性增加或感觉输入中预期噪声增加的影响,成为一个自我强化过程的一部分,该过程产生负价、过度加权的先验,这些先验是阳性症状发展的基础。然后,我们从计算、神经生物学和现象学描述层面提供这个模型的可测试预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd40/12315682/f3ce006f3d3d/pyaf049f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验