Suppr超能文献

机器学习模型预测丙型肝炎病毒退伍军人的疾病进展。

Machine learning models to predict disease progression among veterans with hepatitis C virus.

机构信息

Michigan Medicine, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, Michigan, United States of America.

Department of Medicine, Veterans Affairs Puget Sound Healthcare System and University of Washington, Seattle, WA, United States of America.

出版信息

PLoS One. 2019 Jan 4;14(1):e0208141. doi: 10.1371/journal.pone.0208141. eCollection 2019.

Abstract

BACKGROUND

Machine learning (ML) algorithms provide effective ways to build prediction models using longitudinal information given their capacity to incorporate numerous predictor variables without compromising the accuracy of the risk prediction. Clinical risk prediction models in chronic hepatitis C virus (CHC) can be challenging due to non-linear nature of disease progression. We developed and compared two ML algorithms to predict cirrhosis development in a large CHC-infected cohort using longitudinal data.

METHODS AND FINDINGS

We used national Veterans Health Administration (VHA) data to identify CHC patients in care between 2000-2016. The primary outcome was cirrhosis development ascertained by two consecutive aspartate aminotransferase (AST)-to-platelet ratio indexes (APRIs) > 2 after time zero given the infrequency of liver biopsy in clinical practice and that APRI is a validated non-invasive biomarker of fibrosis in CHC. We excluded those with initial APRI > 2 or pre-existing diagnosis of cirrhosis, hepatocellular carcinoma or hepatic decompensation. Enrollment was defined as the date of the first APRI. Time zero was defined as 2 years after enrollment. Cross-sectional (CS) models used predictors at or closest before time zero as a comparison. Longitudinal models used CS predictors plus longitudinal summary variables (maximum, minimum, maximum of slope, minimum of slope and total variation) between enrollment and time zero. Covariates included demographics, labs, and body mass index. Model performance was evaluated using concordance and area under the receiver operating curve (AuROC). A total of 72,683 individuals with CHC were analyzed with the cohort having a mean age of 52.8, 96.8% male and 53% white. There are 11,616 individuals (16%) who met the primary outcome over a mean follow-up of 7 years. We found superior predictive performance for the longitudinal Cox model compared to the CS Cox model (concordance 0.764 vs 0.746), and for the longitudinal boosted-survival-tree model compared to the linear Cox model (concordance 0.774 vs 0.764). The accuracy of the longitudinal models at 1,3,5 years after time zero also showed superior performance compared to the CS model, based on AuROC.

CONCLUSIONS

Boosted-survival-tree based models using longitudinal information are statistically superior to cross-sectional or linear models for predicting development of cirrhosis in CHC, though all four models were highly accurate. Similar statistical methods could be applied to predict outcomes in other non-linear chronic disease states.

摘要

背景

机器学习(ML)算法提供了使用纵向信息构建预测模型的有效方法,因为它们能够在不影响风险预测准确性的情况下包含大量预测变量。由于疾病进展的非线性性质,慢性丙型肝炎病毒(CHC)的临床风险预测模型可能具有挑战性。我们使用纵向数据开发并比较了两种 ML 算法,以预测大型 CHC 感染队列中肝硬化的发展。

方法和发现

我们使用全国退伍军人健康管理局(VHA)的数据来确定 2000-2016 年期间接受治疗的 CHC 患者。主要结局是通过两次连续天冬氨酸氨基转移酶(AST)-血小板比值指数(APRI)> 2 来确定肝硬化的发展,这是因为在临床实践中肝活检的频率较低,并且 APRI 是 CHC 纤维化的经过验证的非侵入性生物标志物。我们排除了那些初始 APRI > 2 或存在肝硬化、肝细胞癌或肝失代偿的患者。登记定义为第一次 APRI 的日期。时间零定义为登记后 2 年。横截面(CS)模型使用时间零之前或最接近的时间零的预测因子作为比较。纵向模型使用 CS 预测因子加在登记和时间零之间的纵向汇总变量(最大值、最小值、斜率最大值、斜率最小值和总变化)。协变量包括人口统计学、实验室和体重指数。使用一致性和接收器操作曲线下面积(AuROC)评估模型性能。对 72683 名 CHC 患者进行了分析,队列的平均年龄为 52.8 岁,96.8%为男性,53%为白人。在平均 7 年的随访中,共有 11616 名患者(16%)达到了主要结局。与 CS Cox 模型相比,纵向 Cox 模型的预测性能更优(一致性 0.764 与 0.746),与线性 Cox 模型相比,纵向增强生存树模型的预测性能更优(一致性 0.774 与 0.764)。基于 AuROC,纵向模型在时间零后 1、3、5 年的准确性也显示出优于 CS 模型的性能。

结论

使用纵向信息的基于增强生存树的模型在预测 CHC 肝硬化发展方面在统计学上优于横截面或线性模型,尽管所有四个模型都具有很高的准确性。类似的统计方法可以应用于预测其他非线性慢性疾病状态的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8aa2/6319806/27dd9cad2973/pone.0208141.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验