Suppr超能文献

机器学习在非传染性和病毒性疾病中的炎症和肝脏相关风险合并症方面的见解。

Machine learning insights concerning inflammatory and liver-related risk comorbidities in non-communicable and viral diseases.

机构信息

Precision Nutrition and Cardiometabolic Health, Madrid Institute of Advanced Studies-Food Institute, Madrid 28049, Spain.

Department of Internal Medicine, Hospital Universitario HM Sanchinarro, Madrid 28050, Spain.

出版信息

World J Gastroenterol. 2022 Nov 28;28(44):6230-6248. doi: 10.3748/wjg.v28.i44.6230.

Abstract

The liver is a key organ involved in a wide range of functions, whose damage can lead to chronic liver disease (CLD). CLD accounts for more than two million deaths worldwide, becoming a social and economic burden for most countries. Among the different factors that can cause CLD, alcohol abuse, viruses, drug treatments, and unhealthy dietary patterns top the list. These conditions prompt and perpetuate an inflammatory environment and oxidative stress imbalance that favor the development of hepatic fibrogenesis. High stages of fibrosis can eventually lead to cirrhosis or hepatocellular carcinoma (HCC). Despite the advances achieved in this field, new approaches are needed for the prevention, diagnosis, treatment, and prognosis of CLD. In this context, the scientific com-munity is using machine learning (ML) algorithms to integrate and process vast amounts of data with unprecedented performance. ML techniques allow the integration of anthropometric, genetic, clinical, biochemical, dietary, lifestyle and omics data, giving new insights to tackle CLD and bringing personalized medicine a step closer. This review summarizes the investigations where ML techniques have been applied to study new approaches that could be used in inflammatory-related, hepatitis viruses-induced, and coronavirus disease 2019-induced liver damage and enlighten the factors involved in CLD development.

摘要

肝脏是一个涉及广泛功能的关键器官,其损伤可导致慢性肝病 (CLD)。CLD 在全球范围内导致超过 200 万人死亡,成为大多数国家的社会和经济负担。在导致 CLD 的不同因素中,酗酒、病毒、药物治疗和不健康的饮食模式位居前列。这些情况促使并加剧了炎症环境和氧化应激失衡,有利于肝纤维化的发展。纤维化的高阶段最终可能导致肝硬化或肝细胞癌 (HCC)。尽管在这一领域取得了进展,但仍需要新的方法来预防、诊断、治疗和预测 CLD。在这种情况下,科学界正在使用机器学习 (ML) 算法以史无前例的性能整合和处理大量数据。ML 技术允许整合人体测量学、遗传学、临床、生化、饮食、生活方式和组学数据,为解决 CLD 提供新的见解,并使个性化医疗更进一步。这篇综述总结了将 ML 技术应用于研究新方法的研究,这些新方法可能用于与炎症相关的、由肝炎病毒引起的和由 2019 年冠状病毒病引起的肝损伤,并阐明了 CLD 发展中涉及的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06c8/9730439/cefd21833849/WJG-28-6230-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验