Suppr超能文献

虚拟 TEVAR:克服主动脉夹层治疗中计算机模拟工具的障碍。

Virtual TEVAR: Overcoming the Roadblocks of In-Silico Tools for Aortic Dissection Treatment.

机构信息

University College London, Department of Mechanical Engineering, Multiscale Cardiovascular Engineering Group, UK.

WEISS Centre for Surgical and Interventional Sciences, University College London, UK.

出版信息

Theranostics. 2018 Dec 7;8(22):6384-6385. doi: 10.7150/thno.30753. eCollection 2018.

Abstract

The use of in silico tools for the interventional planning of complex vascular conditions, such as Aortic Dissections has been often limited by high computational cost, involving long timescales for accurate results to be produced and low numbers of patients, precluding the use of statistical analyses to inform individual-level models. In the paper [ 2018; 8(20):5758-5771. doi:10.7150/thno.28944], Chen proposed a novel algorithm to compute patient-specific 'virtual TEVAR' that will help clinicians to approach individual treatment and decision-making based on objective and quantifiable metrics and validated on a cohort of 66 patients in real time. This research will significantly impact the field and has the potential to transform the way clinical interventions will be approached in the future.

摘要

使用计算机模拟工具来规划复杂的血管状况(如主动脉夹层)的介入治疗计划,往往受到计算成本高的限制,需要花费很长时间才能得出准确的结果,并且患者数量较少,这使得统计分析无法用于为个体模型提供信息。在[2018; 8(20):5758-5771. doi:10.7150/thno.28944]这篇论文中,Chen 提出了一种计算患者特定的“虚拟 TEVAR”的新算法,这将有助于临床医生根据客观和可量化的指标来处理个体化的治疗和决策,并在 66 名实时患者的队列中进行验证。这项研究将对该领域产生重大影响,并有可能改变未来临床干预的方法。

相似文献

本文引用的文献

7
Aortic dissection.主动脉夹层
Nat Rev Dis Primers. 2016 Jul 21;2:16053. doi: 10.1038/nrdp.2016.53.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验