M.C. Fu, N. T. Ondeck, L. V. Gulotta Hospital for Special Surgery, New York, NY, USA B. U. Nwachukwu, G. H. Garcia, N. N. Verma Rush University Medical Center, Department of Orthopedic Surgery, Chicago, IL, USA J. N. Grauer Yale University School of Medicine, Department of Orthopaedics & Rehabilitation, New Haven, CT, USA.
Clin Orthop Relat Res. 2019 Apr;477(4):881-890. doi: 10.1097/CORR.0000000000000624.
Comorbidity indices like the modified Charlson Comorbidity Index (mCCI) and the modified Frailty Index (mFI) are commonly reported in large database outcomes research. It is unclear if they provide greater association and discriminative ability for postoperative adverse events after total shoulder arthroplasty (TSA) than simple variables.
QUESTIONS/PURPOSES: Using a large research database to examine postoperative adverse events after anatomic and reverse TSA, we asked: (1) Which demographic/anthropometric variable among age, sex, and body mass index (BMI) has the best discriminative ability as measured by receiver operating characteristics (ROC)? (2) Which comorbidity index, among the American Society of Anesthesiologists (ASA) classification, the mCCI, or the mFI, has the best ROC? (3) Does a combination of a demographic/anthropometric variable and a comorbidity index provide better ROC than either variable alone?
Patients who underwent TSA from 2005 to 2015 were identified from the National Surgical Quality Improvement Program (NSQIP). This multicenter database with representative samples from more than 600 hospitals in the United States was chosen for its prospectively collected data and documented superiority over administrative databases. Of an initial 10,597 cases identified, 70 were excluded due to missing age, sex, height, weight, or being younger than 18 years of age, leaving a total of 10,527 patients in the study. Demographics, medical comorbidities, and ASA scores were collected, while BMI, mCCI and mFI were calculated for each patient. Though all required data variables were found in the NSQIP, the completeness of data elements was not determined in this study, and missing data were treated as being the null condition. Thirty-day outcomes included postoperative severe adverse events, any adverse events, extended length of stay (LOS, defined as > 3 days), and discharge to a higher level of care. ROC analysis was performed for each variable and outcome, by plotting its sensitivity against one minus the specificity. The area under the curve (AUC) was used as a measure of model discriminative ability, ranging from 0 to 1, where 1 represents a perfectly accurate test, and 0.5 indicates a test that is no better than chance.
Among demographic/anthropometric variables, age had a higher AUC (0.587-0.727) than sex (0.520-0.628) and BMI (0.492-0.546) for all study outcomes (all p < 0.050), while ASA (0.580-0.630) and mFI (0.568-0.622) had higher AUCs than mCCI (0.532-0.570) among comorbidity indices (all p < 0.050). A combination of age and ASA had higher AUCs (0.608-0.752) than age or ASA alone for any adverse event, extended LOS, and discharge to higher level of care (all p < 0.05). Notably, for nearly all variables and outcomes, the AUCs showed fair or moderate discriminative ability at best.
Despite the use of existing comorbidity indices adapted to large databases such as the NSQIP, they provide no greater association with adverse events after TSA than simple variables such as age and ASA status, which have only fair associations themselves. Based on database-specific coding patterns, the development of database- or NSQIP-specific indices may improve their ability to provide preoperative risk stratification.
Level III, diagnostic study.
在大型数据库结局研究中,常报告合并症指数,如改良 Charlson 合并症指数(mCCI)和改良衰弱指数(mFI)。尚不清楚它们是否比简单变量(如年龄、性别和体重指数(BMI))在全肩关节置换术(TSA)后提供了更大的术后不良事件相关性和鉴别能力。
问题/目的:使用大型研究数据库来检查解剖型和反式 TSA 后的术后不良事件,我们提出以下问题:(1)在接受者操作特征(ROC)分析中,年龄、性别和 BMI 这三个人口统计学/人体测量变量中,哪个变量的鉴别能力最好?(2)在麻醉医师协会(ASA)分级、mCCI 和 mFI 这三种合并症指数中,哪一种具有最佳的 ROC?(3)与单独使用任何一种变量相比,人口统计学/人体测量变量和合并症指数的组合是否能提供更好的 ROC?
从美国国家手术质量改进计划(NSQIP)中确定了 2005 年至 2015 年接受 TSA 的患者。这个多中心数据库代表了美国 600 多家医院的样本,由于其前瞻性收集的数据和优于行政数据库的记录,因此被选中。在最初确定的 10597 例中,有 70 例由于年龄、性别、身高、体重或年龄小于 18 岁而被排除在外,因此研究中共纳入了 10527 例患者。收集了患者的人口统计学、合并症和 ASA 评分,计算了每位患者的 BMI、mCCI 和 mFI。尽管 NSQIP 中包含了所有必需的数据变量,但本研究并未确定数据元素的完整性,并且将缺失数据视为空值条件。30 天的结局包括术后严重不良事件、任何不良事件、延长的住院时间(定义为 > 3 天)和更高水平的护理出院。通过绘制其敏感性与特异性的倒数,对每个变量和结局进行 ROC 分析。曲线下面积(AUC)用于衡量模型的鉴别能力,范围从 0 到 1,其中 1 表示完全准确的测试,0.5 表示测试结果并不优于随机结果。
在人口统计学/人体测量变量中,年龄的 AUC(0.587-0.727)高于性别(0.520-0.628)和 BMI(0.492-0.546),用于所有研究结局(均 p < 0.050),而 ASA(0.580-0.630)和 mFI(0.568-0.622)的 AUC 高于 mCCI(0.532-0.570)(均 p < 0.050)。年龄和 ASA 的组合对于任何不良事件、延长的 LOS 和更高水平的护理出院,其 AUC 高于年龄或 ASA 单独使用(均 p < 0.05)。值得注意的是,对于几乎所有的变量和结局,AUC 显示出最佳的中等或适度鉴别能力。
尽管使用了适用于 NSQIP 等大型数据库的现有合并症指数,但与年龄和 ASA 状态等简单变量相比,它们与 TSA 后不良事件的相关性并没有提高,而这些简单变量本身的相关性也只是中等。根据数据库特有的编码模式,开发数据库或 NSQIP 特有的指数可能会提高其提供术前风险分层的能力。
III 级,诊断研究。