Suppr超能文献

打印组学:应用于熔融电喷射的打印参数的高通量分析。

Printomics: the high-throughput analysis of printing parameters applied to melt electrowriting.

机构信息

Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, 4059 Kelvin Grove, Australia.

出版信息

Biofabrication. 2019 Jan 24;11(2):025004. doi: 10.1088/1758-5090/aafc41.

Abstract

Melt electrowriting (MEW) combines the fundamental principles of electrospinning, a fibre forming technology, and 3D printing. The process, however, is highly complex and the quality of the fabricated structures strongly depends on the interplay of key printing parameter settings including processing temperature, applied voltage, collection speed, and applied pressure. These parameters act in unison, comprising the principal forces on the electrified jet: pushing the viscous polymer out of the nozzle and mechanically and electrostatically dragging it for deposition towards the collector. Although previous studies interpreted the underlying mechanism of electrospinning with polymer melts in a direct writing mode, contemporary devices used in laboratory environments lack the capability to collect large data reproducibly. Yet, a validated large data set is a condition sine qua non to design an in-process control system which allows to computer control the complexity of the MEW process. For this reason, we engineered an advanced automated MEW system with monitoring capabilities to specifically generate large, reproducible data volumes which allows the interpretation of complex process parameters. Additionally, the design of an innovative real-time MEW monitoring system identifies the main effects of the system parameters on the geometry of the fibre flight path. This enables, for the first time, the establishment of a comprehensive correlation between the input parameters and the geometry of a MEW jet. The study verifies the most stable process parameters for the highly reproducible fabrication of a medical-grade poly(ε-caprolactone) fibres and demonstrates how Printomics can be performed for the high throughput analysis of processing parameters for MEW.

摘要

熔融静电纺丝(MEW)结合了静电纺丝(一种纤维形成技术)和 3D 打印的基本原理。然而,该过程非常复杂,并且所制造结构的质量强烈依赖于关键打印参数设置的相互作用,包括加工温度、施加电压、收集速度和施加压力。这些参数协同作用,构成了带电射流的主要作用力:将粘性聚合物从喷嘴中推出,并通过机械和静电作用将其拖向收集器进行沉积。尽管先前的研究以直接书写模式解释了聚合物熔体静电纺丝的基础机制,但实验室环境中使用的现代设备缺乏可重复收集大量数据的能力。然而,验证的大数据集是设计过程控制系统的必要条件,该系统允许计算机控制 MEW 过程的复杂性。出于这个原因,我们设计了一个具有监测功能的先进自动化 MEW 系统,专门生成大量可重复的数据量,从而可以解释复杂的工艺参数。此外,创新的实时 MEW 监测系统的设计确定了系统参数对纤维飞行路径几何形状的主要影响。这首次能够在输入参数和 MEW 射流的几何形状之间建立全面的相关性。该研究验证了高度可重复制造医用级聚(ε-己内酯)纤维的最稳定工艺参数,并展示了如何执行 Printomics 以高通量分析 MEW 的处理参数。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验