Suppr超能文献

控制熔体静电纺聚(ε-己内酯)纤维的形貌和结晶度

Controlling Topography and Crystallinity of Melt Electrowritten Poly(ɛ-Caprolactone) Fibers.

作者信息

Blum Carina, Weichhold Jan, Hochleitner Gernot, Stepanenko Vladimir, Würthner Frank, Groll Jürgen, Jungst Tomasz

机构信息

Department of Functional Materials in Medicine and Dentistry at the Institute of Functional Materials and Biofabrication (IFB) University of Würzburg and KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), Würzburg, Germany.

Institut für Organische Chemie, Universität Würzburg, Würzburg, Germany.

出版信息

3D Print Addit Manuf. 2021 Oct 1;8(5):315-321. doi: 10.1089/3dp.2020.0290. Epub 2021 Oct 8.

Abstract

Melt electrowriting (MEW) is an aspiring 3D printing technology with an unprecedented resolution among fiber-based printing technologies. It offers the ability to direct-write predefined designs utilizing a jet of molten polymer to fabricate constructs composed of fibers with diameters of only a few micrometers. These dimensions enable unique construct properties. Poly(ɛ-caprolactone) (PCL), a semicrystalline polymer mainly used for biomedical and life science applications, is the most prominent material for MEW and exhibits excellent printing properties. Despite the wealth of melt electrowritten constructs that have been fabricated by MEW, a detailed investigation, especially regarding fiber analysis on a macro- and microlevel is still lacking. Hence, this study systematically examines the influence of process parameters such as spinneret diameter, feeding pressure, and collector velocity on the diameter and particularly the topography of PCL fibers and sheds light on how these parameters affect the mechanical properties and crystallinity. A correlation between the mechanical properties, crystallite size, and roughness of the deposited fiber, depending on the collector velocity and applied feeding pressure, is revealed. These findings are used to print constructs composed of fibers with different microtopography without affecting the fiber diameter and thus the macroscopic assembly of the printed constructs.

摘要

熔体静电纺丝(MEW)是一种很有前景的3D打印技术,在基于纤维的打印技术中具有前所未有的分辨率。它能够利用熔融聚合物射流直接书写预定义的设计,以制造由直径仅为几微米的纤维组成的结构。这些尺寸赋予了结构独特的性能。聚(ε-己内酯)(PCL)是一种主要用于生物医学和生命科学应用的半结晶聚合物,是MEW最主要的材料,具有出色的打印性能。尽管已经通过MEW制造了大量的熔体静电纺丝结构,但仍缺乏详细的研究,特别是在宏观和微观层面上对纤维的分析。因此,本研究系统地研究了喷丝头直径、进料压力和收集器速度等工艺参数对PCL纤维直径,特别是形貌的影响,并阐明了这些参数如何影响机械性能和结晶度。揭示了取决于收集器速度和施加的进料压力的沉积纤维的机械性能、微晶尺寸和粗糙度之间的相关性。这些发现被用于打印由具有不同微观形貌的纤维组成的结构,而不影响纤维直径,从而不影响打印结构的宏观组装。

相似文献

1
Controlling Topography and Crystallinity of Melt Electrowritten Poly(ɛ-Caprolactone) Fibers.
3D Print Addit Manuf. 2021 Oct 1;8(5):315-321. doi: 10.1089/3dp.2020.0290. Epub 2021 Oct 8.
3
The Multiweek Thermal Stability of Medical-Grade Poly(ε-caprolactone) During Melt Electrowriting.
Small. 2022 Jan;18(3):e2104193. doi: 10.1002/smll.202104193. Epub 2021 Nov 5.
4
A Decade of Melt Electrowriting.
Small Methods. 2023 Jul;7(7):e2201589. doi: 10.1002/smtd.202201589. Epub 2023 May 30.
5
Polymers for Melt Electrowriting.
Adv Healthc Mater. 2021 Jan;10(1):e2001232. doi: 10.1002/adhm.202001232. Epub 2020 Sep 17.
6
Melt Electrowritten Sandwich Scaffold Technique Using Sulforhodamine B to Monitor Stem Cell Behavior.
Tissue Eng Part C Methods. 2020 Oct;26(10):519-527. doi: 10.1089/ten.TEC.2020.0240.
7
Dimension-Based Design of Melt Electrowritten Scaffolds.
Small. 2018 May;14(22):e1800232. doi: 10.1002/smll.201800232. Epub 2018 Apr 30.
8
Melt Electrowriting of Thermoplastic Elastomers.
Macromol Rapid Commun. 2018 May;39(10):e1800055. doi: 10.1002/marc.201800055. Epub 2018 Apr 14.
9
Effects of Six Processing Parameters on the Size of PCL Fibers Prepared by Melt Electrospinning Writing.
Micromachines (Basel). 2023 Jul 18;14(7):1437. doi: 10.3390/mi14071437.
10
Design of Suspended Melt Electrowritten Fiber Arrays for Schwann Cell Migration and Neurite Outgrowth.
Macromol Biosci. 2021 Jul;21(7):e2000439. doi: 10.1002/mabi.202000439. Epub 2021 May 5.

引用本文的文献

1
Designing Smartly: Understanding the Crystallinity of Melt Electrowritten Scaffolds.
Eng Life Sci. 2025 Apr 14;25(4):e70020. doi: 10.1002/elsc.70020. eCollection 2025 Apr.
2
Understanding the Significance of Layer Bonding in Melt Electrowriting.
Adv Sci (Weinh). 2024 Dec;11(47):e2407514. doi: 10.1002/advs.202407514. Epub 2024 Oct 24.
3
Robustness optimization for rapid prototyping of functional artifacts based on visualized computing digital twins.
Vis Comput Ind Biomed Art. 2023 Feb 27;6(1):4. doi: 10.1186/s42492-023-00131-w.
4

本文引用的文献

1
Electrospinning and additive manufacturing: converging technologies.
Biomater Sci. 2013 Feb 3;1(2):171-185. doi: 10.1039/c2bm00039c. Epub 2012 Oct 22.
3
The Impact of Melt Electrowritten Scaffold Design on Porosity Determined by X-Ray Microtomography.
Tissue Eng Part C Methods. 2019 Jun;25(6):367-379. doi: 10.1089/ten.TEC.2018.0373.
4
Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes.
Polymers (Basel). 2018 Dec 27;11(1):34. doi: 10.3390/polym11010034.
5
Tailored Melt Electrowritten Scaffolds for the Generation of Sheet-Like Tissue Constructs from Multicellular Spheroids.
Adv Healthc Mater. 2019 Apr;8(7):e1801326. doi: 10.1002/adhm.201801326. Epub 2019 Mar 5.
6
Dimension-Based Design of Melt Electrowritten Scaffolds.
Small. 2018 May;14(22):e1800232. doi: 10.1002/smll.201800232. Epub 2018 Apr 30.
7
3D printing strategies for peripheral nerve regeneration.
Biofabrication. 2018 Mar 23;10(3):032001. doi: 10.1088/1758-5090/aaaf50.
10
Additive manufacturing of scaffolds with sub-micron filaments via melt electrospinning writing.
Biofabrication. 2015 Jun 12;7(3):035002. doi: 10.1088/1758-5090/7/3/035002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验