Duigou Stéphane, Silvain Maud, Viguera Enrique, Michel Bénédicte
Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
Plateforme Intégrée IMAGIF, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France.
PLoS Genet. 2014 Oct 16;10(10):e1004719. doi: 10.1371/journal.pgen.1004719. eCollection 2014 Oct.
The HolC-HolD (χψ) complex is part of the DNA polymerase III holoenzyme (Pol III HE) clamp-loader. Several lines of evidence indicate that both leading- and lagging-strand synthesis are affected in the absence of this complex. The Escherichia coli ΔholD mutant grows poorly and suppressor mutations that restore growth appear spontaneously. Here we show that duplication of the ssb gene, encoding the single-stranded DNA binding protein (SSB), restores ΔholD mutant growth at all temperatures on both minimal and rich medium. RecFOR-dependent SOS induction, previously shown to occur in the ΔholD mutant, is unaffected by ssb gene duplication, suggesting that lagging-strand synthesis remains perturbed. The C-terminal SSB disordered tail, which interacts with several E. coli repair, recombination and replication proteins, must be intact in both copies of the gene in order to restore normal growth. This suggests that SSB-mediated ΔholD suppression involves interaction with one or more partner proteins. ssb gene duplication also suppresses ΔholC single mutant and ΔholC ΔholD double mutant growth defects, indicating that it bypasses the need for the entire χψ complex. We propose that doubling the amount of SSB stabilizes HolCD-less Pol III HE DNA binding through interactions between SSB and a replisome component, possibly DnaE. Given that SSB binds DNA in vitro via different binding modes depending on experimental conditions, including SSB protein concentration and SSB interactions with partner proteins, our results support the idea that controlling the balance between SSB binding modes is critical for DNA Pol III HE stability in vivo, with important implications for DNA replication and genome stability.
HolC-HolD(χψ)复合物是DNA聚合酶III全酶(Pol III HE)钳位装载器的一部分。多条证据表明,在缺乏该复合物的情况下,前导链和滞后链的合成都会受到影响。大肠杆菌ΔholD突变体生长不良,并且会自发出现恢复生长的抑制突变。在这里,我们表明,编码单链DNA结合蛋白(SSB)的ssb基因的复制,可在所有温度下在基本培养基和丰富培养基上恢复ΔholD突变体的生长。先前已证明在ΔholD突变体中发生的RecFOR依赖性SOS诱导不受ssb基因复制的影响,这表明滞后链的合成仍然受到干扰。与几种大肠杆菌修复、重组和复制蛋白相互作用的C末端SSB无序尾巴,在基因的两个拷贝中都必须完整,才能恢复正常生长。这表明SSB介导的ΔholD抑制涉及与一种或多种伴侣蛋白的相互作用。ssb基因复制还抑制了ΔholC单突变体和ΔholCΔholD双突变体的生长缺陷,表明它绕过了对整个χψ复合物的需求。我们提出,将SSB的量加倍可通过SSB与复制体组件(可能是DnaE)之间的相互作用来稳定无HolCD的Pol III HE与DNA的结合。鉴于SSB在体外根据实验条件(包括SSB蛋白浓度以及SSB与伴侣蛋白的相互作用)通过不同的结合模式结合DNA,我们的结果支持这样的观点,即控制SSB结合模式之间的平衡对于体内DNA Pol III HE的稳定性至关重要,这对DNA复制和基因组稳定性具有重要意义。