Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Stem Cells Transl Med. 2019 Apr;8(4):355-365. doi: 10.1002/sctm.18-0094. Epub 2019 Jan 7.
One of the fundamental limitations in assessing potential efficacy in Central Nervous System (CNS) transplantation of stem cells is the capacity for monitoring cell survival and migration noninvasively and longitudinally. Human glial-restricted progenitor (hGRP) cells (Q-Cells) have been investigated for their utility in providing neuroprotection following transplantation into models of amyotrophic lateral sclerosis (ALS) and have been granted a Food and Drug Administration (FDA) Investigational New Drug (IND) for intraspinal transplantation in ALS patients. Furthermore, clinical development of these cells for therapeutic use will rely on the ability to track the cells using noninvasive imaging methodologies as well as the verification that the transplanted GRPs have disease-relevant activity. As a first step in development, we investigated the use of a perfluorocarbon (PFC) dual-modal ( F magnetic resonance imaging [MRI] and fluorescence) tracer agent to label Q-Cells in culture and following spinal cord transplantation. PFCs have a number of potential benefits that make them appealing for clinical use. They are quantitative, noninvasive, biologically inert, and highly specific. In this study, we developed optimized PFC labeling protocols for Q-Cells and demonstrate that PFCs do not significantly alter the glial identity of Q-Cells. We also show that PFCs do not interfere with the capacity for differentiation into astrocytes either in vitro or following transplantation into the ventral horn of the mouse spinal cord, and can be visualized in vivo by hot spot F MRI. These studies provide a foundation for further preclinical development of PFCs within the context of evaluating Q-Cell transplantation in the brain and spinal cord of future ALS patients using F MRI. Stem Cells Translational Medicine 2019;8:355-365.
评估中枢神经系统(CNS)干细胞移植潜在疗效的一个基本限制是,能否进行非侵入性和纵向监测细胞存活和迁移。人类少突胶质前体细胞(hGRP)细胞(Q 细胞)已被研究用于在肌萎缩侧索硬化症(ALS)模型中移植后提供神经保护,并已获得美国食品和药物管理局(FDA)的脊髓内移植 ALS 患者的新药研究(IND)批准。此外,这些细胞的临床开发用于治疗将依赖于使用非侵入性成像方法跟踪细胞的能力,以及验证移植的 GRP 具有与疾病相关的活性。作为开发的第一步,我们研究了使用全氟碳(PFC)双模态( F 磁共振成像[MRI]和荧光)示踪剂来标记培养中的 Q 细胞和脊髓移植后的 Q 细胞。PFC 具有许多使其具有吸引力的临床应用的潜在优势。它们是定量的、非侵入性的、生物惰性的和高度特异性的。在这项研究中,我们为 Q 细胞开发了优化的 PFC 标记方案,并证明 PFC 不会显著改变 Q 细胞的神经胶质特性。我们还表明,PFC 不会干扰 Q 细胞在体外分化为星形胶质细胞的能力,也不会干扰其在小鼠脊髓腹角的移植后的分化能力,并且可以通过热点 F MRI 在体内可视化。这些研究为进一步的临床前开发奠定了基础,以便在未来的 ALS 患者的大脑和脊髓中评估 Q 细胞移植时使用 F MRI 进行评估。《干细胞转化医学》2019 年;8:355-365.