Cornelissen Rob, Bøggild Andreas, Thiruvallur Eachambadi Raghavendran, Koning Roman I, Kremer Anna, Hidalgo-Martinez Silvia, Zetsche Eva-Maria, Damgaard Lars R, Bonné Robin, Drijkoningen Jeroen, Geelhoed Jeanine S, Boesen Thomas, Boschker Henricus T S, Valcke Roland, Nielsen Lars Peter, D'Haen Jan, Manca Jean V, Meysman Filip J R
X-LAB, Hasselt University, Hasselt, Belgium.
Center for Electromicrobiology, Department of Bioscience Aarhus University, Aarhus, Denmark.
Front Microbiol. 2018 Dec 20;9:3044. doi: 10.3389/fmicb.2018.03044. eCollection 2018.
Cable bacteria are long, multicellular micro-organisms that are capable of transporting electrons from cell to cell along the longitudinal axis of their centimeter-long filaments. The conductive structures that mediate this long-distance electron transport are thought to be located in the cell envelope. Therefore, this study examines in detail the architecture of the cell envelope of cable bacterium filaments by combining different sample preparation methods (chemical fixation, resin-embedding, and cryo-fixation) with a portfolio of imaging techniques (scanning electron microscopy, transmission electron microscopy and tomography, focused ion beam scanning electron microscopy, and atomic force microscopy). We systematically imaged intact filaments with varying diameters. In addition, we investigated the periplasmic fiber sheath that remains after the cytoplasm and membranes were removed by chemical extraction. Based on these investigations, we present a quantitative structural model of a cable bacterium. Cable bacteria build their cell envelope by a parallel concatenation of ridge compartments that have a standard size. Larger diameter filaments simply incorporate more parallel ridge compartments. Each ridge compartment contains a ~50 nm diameter fiber in the periplasmic space. These fibers are continuous across cell-to-cell junctions, which display a conspicuous cartwheel structure that is likely made by invaginations of the outer cell membrane around the periplasmic fibers. The continuity of the periplasmic fibers across cells makes them a prime candidate for the sought-after electron conducting structure in cable bacteria.
电缆细菌是一种长的多细胞微生物,能够沿着其厘米长细丝的纵轴在细胞间传输电子。介导这种长距离电子传输的导电结构被认为位于细胞膜。因此,本研究通过将不同的样品制备方法(化学固定、树脂包埋和冷冻固定)与一系列成像技术(扫描电子显微镜、透射电子显微镜和断层扫描、聚焦离子束扫描电子显微镜和原子力显微镜)相结合,详细研究了电缆细菌细丝细胞膜的结构。我们系统地对不同直径的完整细丝进行了成像。此外,我们研究了通过化学提取去除细胞质和膜后残留的周质纤维鞘。基于这些研究,我们提出了一个电缆细菌的定量结构模型。电缆细菌通过具有标准尺寸的脊状隔室的平行串联来构建其细胞膜。较大直径的细丝只是包含更多平行的脊状隔室。每个脊状隔室在周质空间中含有一根直径约50纳米的纤维。这些纤维在细胞间连接处是连续的,连接处呈现出明显的车轮状结构,这可能是由外细胞膜围绕周质纤维的内陷形成的。周质纤维在细胞间的连续性使其成为电缆细菌中寻找的电子传导结构的主要候选者。