Suppr超能文献

通过镍蛋白丝实现电缆细菌中的高效长程传导。

Efficient long-range conduction in cable bacteria through nickel protein wires.

机构信息

Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.

Microbial Systems Technology Excellence Centre, University of Antwerp, Wilrijk, Belgium.

出版信息

Nat Commun. 2021 Jun 28;12(1):3996. doi: 10.1038/s41467-021-24312-4.

Abstract

Filamentous cable bacteria display long-range electron transport, generating electrical currents over centimeter distances through a highly ordered network of fibers embedded in their cell envelope. The conductivity of these periplasmic wires is exceptionally high for a biological material, but their chemical structure and underlying electron transport mechanism remain unresolved. Here, we combine high-resolution microscopy, spectroscopy, and chemical imaging on individual cable bacterium filaments to demonstrate that the periplasmic wires consist of a conductive protein core surrounded by an insulating protein shell layer. The core proteins contain a sulfur-ligated nickel cofactor, and conductivity decreases when nickel is oxidized or selectively removed. The involvement of nickel as the active metal in biological conduction is remarkable, and suggests a hitherto unknown form of electron transport that enables efficient conduction in centimeter-long protein structures.

摘要

丝状电缆细菌展示了长程电子传递,通过其细胞包膜中嵌入的高度有序纤维网络,在厘米距离上产生电流。与生物材料相比,这种胞外丝的导电性非常高,但它们的化学结构和潜在的电子传递机制仍未解决。在这里,我们结合高分辨率显微镜、光谱和化学成像技术,对单个电缆细菌丝进行研究,证明胞外丝由一个导电蛋白核心和一个绝缘蛋白壳层组成。核心蛋白含有一个硫配位的镍辅因子,当镍被氧化或选择性去除时,导电性会降低。镍作为生物传导中的活性金属的参与是显著的,这表明存在一种未知的电子传递形式,使厘米长的蛋白质结构能够有效地进行传导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b6c6/8238962/03156065ba5d/41467_2021_24312_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验