Suppr超能文献

电缆细菌的运动性

Motility of Electric Cable Bacteria.

作者信息

Bjerg Jesper Tataru, Damgaard Lars Riis, Holm Simon Agner, Schramm Andreas, Nielsen Lars Peter

机构信息

Center for Geomicrobiology, Department of Bioscience, Aarhus University, Aarhus, Denmark Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark

Section for Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.

出版信息

Appl Environ Microbiol. 2016 Jun 13;82(13):3816-21. doi: 10.1128/AEM.01038-16. Print 2016 Jul 1.

Abstract

UNLABELLED

Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces with a highly variable speed of 0.5 ± 0.3 μm s(-1) (mean ± standard deviation) and time between reversals of 155 ± 108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment.

IMPORTANCE

This study reports on the motility of cable bacteria, capable of transmitting electrons over centimeter distances. It gives us a new insight into their behavior in sediments and explains previously puzzling findings. Cable bacteria greatly influence their environment, and this article adds significantly to the body of knowledge about this organism.

摘要

未标记

电缆细菌是丝状细菌,能在厘米级距离上实现硫化物氧化与氧还原的电耦合,在沉积物环境中的观察表明它们具有运动性。通过延时显微镜观察,我们发现电缆细菌在表面上进行滑行运动,速度变化很大,为0.5±0.3μm s⁻¹(平均值±标准差),反转之间的时间为155±108秒。它们经常呈环状向前移动,扭曲环的形成揭示了细丝的螺旋旋转。电缆细菌对其环境中的化学梯度有反应,在有氧-缺氧界面周围,它们卷曲并堆积,直线部分连接回硫化物源。因此,在动态沉积物环境中,运动似乎有助于电缆细菌在其远距离电子供体和受体之间建立并保持最佳连接。

重要性

本研究报道了能够在厘米级距离上传输电子的电缆细菌的运动性。它让我们对它们在沉积物中的行为有了新的认识,并解释了之前令人困惑的发现。电缆细菌对其环境有很大影响,本文极大地丰富了关于这种生物体的知识体系。

相似文献

1
Motility of Electric Cable Bacteria.
Appl Environ Microbiol. 2016 Jun 13;82(13):3816-21. doi: 10.1128/AEM.01038-16. Print 2016 Jul 1.
2
Electric coupling between distant nitrate reduction and sulfide oxidation in marine sediment.
ISME J. 2014 Aug;8(8):1682-90. doi: 10.1038/ismej.2014.19. Epub 2014 Feb 27.
3
Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm.
Appl Environ Microbiol. 2015 Feb;81(3):948-56. doi: 10.1128/AEM.02682-14. Epub 2014 Nov 21.
4
Long-distance electron transfer by cable bacteria in aquifer sediments.
ISME J. 2016 Aug;10(8):2010-9. doi: 10.1038/ismej.2015.250. Epub 2016 Apr 8.
5
Cable bacteria with electric connection to oxygen attract flocks of diverse bacteria.
Nat Commun. 2023 Mar 23;14(1):1614. doi: 10.1038/s41467-023-37272-8.
6
Cable Bacteria in Freshwater Sediments.
Appl Environ Microbiol. 2015 Sep 1;81(17):6003-11. doi: 10.1128/AEM.01064-15. Epub 2015 Jun 26.
7
Extracellular electron transfer genes expressed by candidate flocking bacteria in cable bacteria sediment.
mSystems. 2025 Jan 21;10(1):e0125924. doi: 10.1128/msystems.01259-24. Epub 2024 Dec 19.
8
On the evolution and physiology of cable bacteria.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):19116-19125. doi: 10.1073/pnas.1903514116. Epub 2019 Aug 19.
9
Cable Bacteria Skeletons as Catalytically Active Electrodes.
Angew Chem Int Ed Engl. 2024 Feb 5;63(6):e202312647. doi: 10.1002/anie.202312647. Epub 2023 Dec 29.
10
The rhizosphere of aquatic plants is a habitat for cable bacteria.
FEMS Microbiol Ecol. 2019 Jun 1;95(6). doi: 10.1093/femsec/fiz062.

引用本文的文献

2
Multidisciplinary methodologies used in the study of cable bacteria.
FEMS Microbiol Rev. 2025 Jan 14;49. doi: 10.1093/femsre/fuae030.
3
Interaction of living cable bacteria with carbon electrodes in bioelectrochemical systems.
Appl Environ Microbiol. 2024 Aug 21;90(8):e0079524. doi: 10.1128/aem.00795-24. Epub 2024 Jul 31.
4
Electrogenic sulfur oxidation mediated by cable bacteria and its ecological effects.
Environ Sci Ecotechnol. 2023 Dec 19;20:100371. doi: 10.1016/j.ese.2023.100371. eCollection 2024 Jul.
6
Cable bacteria with electric connection to oxygen attract flocks of diverse bacteria.
Nat Commun. 2023 Mar 23;14(1):1614. doi: 10.1038/s41467-023-37272-8.
7
Biogeochemical impacts of fish farming on coastal sediments: Insights into the functional role of cable bacteria.
Front Microbiol. 2022 Dec 22;13:1034401. doi: 10.3389/fmicb.2022.1034401. eCollection 2022.
8
Microbial succession in a marine sediment: Inferring interspecific microbial interactions with marine cable bacteria.
Environ Microbiol. 2022 Dec;24(12):6348-6364. doi: 10.1111/1462-2920.16230. Epub 2022 Oct 17.
9
Polyphosphate Dynamics in Cable Bacteria.
Front Microbiol. 2022 May 19;13:883807. doi: 10.3389/fmicb.2022.883807. eCollection 2022.
10
Using Oxidative Electrodes to Enrich Novel Members in the Family from Intertidal Sediments.
Microorganisms. 2021 Nov 11;9(11):2329. doi: 10.3390/microorganisms9112329.

本文引用的文献

1
Cable bacteria generate a firewall against euxinia in seasonally hypoxic basins.
Proc Natl Acad Sci U S A. 2015 Oct 27;112(43):13278-83. doi: 10.1073/pnas.1510152112. Epub 2015 Oct 7.
2
Cable Bacteria in Freshwater Sediments.
Appl Environ Microbiol. 2015 Sep 1;81(17):6003-11. doi: 10.1128/AEM.01064-15. Epub 2015 Jun 26.
3
Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm.
Appl Environ Microbiol. 2015 Feb;81(3):948-56. doi: 10.1128/AEM.02682-14. Epub 2014 Nov 21.
4
Rethinking sediment biogeochemistry after the discovery of electric currents.
Ann Rev Mar Sci. 2015;7:425-42. doi: 10.1146/annurev-marine-010814-015708. Epub 2014 Sep 19.
5
Cable bacteria associated with long-distance electron transport in New England salt marsh sediment.
Environ Microbiol Rep. 2015 Apr;7(2):175-9. doi: 10.1111/1758-2229.12216. Epub 2014 Dec 17.
6
Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor.
ISME J. 2014 Sep;8(9):1843-54. doi: 10.1038/ismej.2014.41. Epub 2014 Mar 27.
7
Succession of cable bacteria and electric currents in marine sediment.
ISME J. 2014 Jun;8(6):1314-22. doi: 10.1038/ismej.2013.239. Epub 2014 Jan 23.
8
Filamentous bacteria transport electrons over centimetre distances.
Nature. 2012 Nov 8;491(7423):218-21. doi: 10.1038/nature11586. Epub 2012 Oct 24.
9
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.
10
Methods for cell and particle tracking.
Methods Enzymol. 2012;504:183-200. doi: 10.1016/B978-0-12-391857-4.00009-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验