Suppr超能文献

DEGS1 相关的异常神经酰胺代谢会损害人类的神经系统功能。

DEGS1-associated aberrant sphingolipid metabolism impairs nervous system function in humans.

机构信息

Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland.

Institute for Clinical Chemistry, University Hospital, Zürich, Switzerland.

出版信息

J Clin Invest. 2019 Mar 1;129(3):1229-1239. doi: 10.1172/JCI124159. Epub 2019 Feb 11.

Abstract

BACKGROUND

Sphingolipids are important components of cellular membranes and functionally associated with fundamental processes such as cell differentiation, neuronal signaling, and myelin sheath formation. Defects in the synthesis or degradation of sphingolipids leads to various neurological pathologies; however, the entire spectrum of sphingolipid metabolism disorders remains elusive.

METHODS

A combined approach of genomics and lipidomics was applied to identify and characterize a human sphingolipid metabolism disorder.

RESULTS

By whole-exome sequencing in a patient with a multisystem neurological disorder of both the central and peripheral nervous systems, we identified a homozygous p.Ala280Val variant in DEGS1, which catalyzes the last step in the ceramide synthesis pathway. The blood sphingolipid profile in the patient showed a significant increase in dihydro sphingolipid species that was further recapitulated in patient-derived fibroblasts, in CRISPR/Cas9-derived DEGS1-knockout cells, and by pharmacological inhibition of DEGS1. The enzymatic activity in patient fibroblasts was reduced by 80% compared with wild-type cells, which was in line with a reduced expression of mutant DEGS1 protein. Moreover, an atypical and potentially neurotoxic sphingosine isomer was identified in patient plasma and in cells expressing mutant DEGS1.

CONCLUSION

We report DEGS1 dysfunction as the cause of a sphingolipid disorder with hypomyelination and degeneration of both the central and peripheral nervous systems.

TRIAL REGISTRATION

Not applicable.

FUNDING

Seventh Framework Program of the European Commission, Swiss National Foundation, Rare Disease Initiative Zurich.

摘要

背景

神经鞘磷脂是细胞膜的重要组成部分,与细胞分化、神经元信号传递和髓鞘形成等基本过程功能相关。神经鞘磷脂合成或降解缺陷会导致各种神经病理学;然而,神经鞘磷脂代谢紊乱的全貌仍难以捉摸。

方法

采用基因组学和脂质组学相结合的方法,鉴定并表征人类神经鞘磷脂代谢紊乱。

结果

通过对一名患有中枢神经系统和周围神经系统多系统神经障碍的患者进行全外显子组测序,我们发现了 DEGS1 中的纯合 p.Ala280Val 变异,该变异催化神经鞘磷脂合成途径的最后一步。患者的血液神经鞘磷脂谱显示二氢神经鞘磷脂种类显著增加,在患者来源的成纤维细胞、CRISPR/Cas9 衍生的 DEGS1 敲除细胞和 DEGS1 药理学抑制中进一步得到证实。与野生型细胞相比,患者成纤维细胞的酶活性降低了 80%,这与突变 DEGS1 蛋白表达减少相一致。此外,在患者血浆和表达突变 DEGS1 的细胞中鉴定出一种非典型的、潜在神经毒性的神经鞘氨醇异构体。

结论

我们报告了 DEGS1 功能障碍是一种伴有中枢和周围神经系统髓鞘减少和变性的神经鞘磷脂紊乱的原因。

试验注册

不适用。

资金

欧盟第七框架计划、瑞士国家基金会、苏黎世罕见病倡议。

相似文献

4
DEGS1 variant causes neurological disorder.DEGS1 变异导致神经紊乱。
Eur J Hum Genet. 2019 Nov;27(11):1668-1676. doi: 10.1038/s41431-019-0444-z. Epub 2019 Jun 11.
8
DEGS1 -related leukodystrophy: a clinical report and review of literature.DEGS1 相关脑白质营养不良:临床报告及文献复习。
Clin Dysmorphol. 2023 Jul 1;32(3):106-111. doi: 10.1097/MCD.0000000000000457. Epub 2023 May 1.

引用本文的文献

本文引用的文献

1
Strong Heart, Low Ceramides.心脏强健,神经酰胺水平低。
Diabetes. 2018 Aug;67(8):1457-1460. doi: 10.2337/dbi18-0018.
2
Could Ceramides Become the New Cholesterol?神经酰胺会成为新的胆固醇吗?
Cell Metab. 2018 Feb 6;27(2):276-280. doi: 10.1016/j.cmet.2017.12.003. Epub 2018 Jan 4.
3
Sphingolipids and their metabolism in physiology and disease.鞘脂及其代谢在生理和疾病中的作用。
Nat Rev Mol Cell Biol. 2018 Mar;19(3):175-191. doi: 10.1038/nrm.2017.107. Epub 2017 Nov 22.
4
Sphingolipid metabolism in cancer signalling and therapy.鞘脂代谢在癌症信号传导与治疗中的作用
Nat Rev Cancer. 2018 Jan;18(1):33-50. doi: 10.1038/nrc.2017.96. Epub 2017 Nov 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验