Suppr超能文献

基于时-速信号的足式机器人故障诊断的多特征融合

Multi-Features Fusion for Fault Diagnosis of Pedal Robot Using Time-Speed Signals.

机构信息

State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China.

Shanghai Engineering Research Center of Civil Aircraft Health Monitoring, Shanghai Aircraft Customer Service Co., Ltd., Shanghai 200241, China.

出版信息

Sensors (Basel). 2019 Jan 4;19(1):163. doi: 10.3390/s19010163.

Abstract

In order to realize automation of the pollutant emission tests of vehicles, a pedal robot is designed instead of a human-driven vehicle. Sometimes, the actual time-speed curve of the vehicle will deviate from the upper or lower limit of the worldwide light-duty test cycle (WLTC) target curve, which will cause a fault. In this paper, a new fault diagnosis method is proposed and applied to the pedal robot. Since principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and Autoencoder cannot extract feature information adequately when they are used alone, three types of feature components extracted by PCA, t-SNE, and Autoencoder are fused to form a nine-dimensional feature set. Then, the feature set is reduced into three-dimensional space via Treelet Transform. Finally, the fault samples are classified by Gaussian process classifier. Compared with the methods using only one algorithm to extract features, the proposed method has the minimum standard deviation, 0.0078, and almost the maximum accuracy, 98.17%. The accuracy of the proposed method is only 0.24% lower than that without Treelet Transform, but the processing time is 6.73% less than that without Treelet Transform. These indicate that the multi-features fusion model and Treelet Transform method is quite effective. Therefore, the proposed method is quite helpful for fault diagnosis of the pedal robot.

摘要

为了实现车辆污染物排放测试的自动化,设计了一种脚踏机器人来代替人工驾驶的车辆。有时,车辆的实际时间-速度曲线会偏离全球轻型车测试循环(WLTC)目标曲线的上下限,从而导致故障。本文提出了一种新的故障诊断方法,并将其应用于脚踏机器人。由于主成分分析(PCA)、t 分布随机近邻嵌入(t-SNE)和自动编码器在单独使用时无法充分提取特征信息,因此融合了 PCA、t-SNE 和自动编码器提取的三种特征分量,形成了一个九维特征集。然后,通过 Treelet Transform 将特征集降维到三维空间。最后,使用高斯过程分类器对故障样本进行分类。与仅使用一种算法提取特征的方法相比,所提出的方法具有最小的标准差 0.0078,几乎最大的准确率 98.17%。与不使用 Treelet Transform 的方法相比,所提出方法的准确率仅低 0.24%,但处理时间减少了 6.73%。这些表明多特征融合模型和 Treelet Transform 方法非常有效。因此,所提出的方法对于脚踏机器人的故障诊断非常有帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a081/6339021/6586840bbb84/sensors-19-00163-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验