Assi Nada, Moskal Aurelie, Slimani Nadia, Viallon Vivian, Chajes Veronique, Freisling Heinz, Monni Stefano, Knueppel Sven, Förster Jana, Weiderpass Elisabete, Lujan-Barroso Leila, Amiano Pilar, Ardanaz Eva, Molina-Montes Esther, Salmerón Diego, Quirós José Ramón, Olsen Anja, Tjønneland Anne, Dahm Christina C, Overvad Kim, Dossus Laure, Fournier Agnès, Baglietto Laura, Fortner Renee Turzanski, Kaaks Rudolf, Trichopoulou Antonia, Bamia Christina, Orfanos Philippos, De Magistris Maria Santucci, Masala Giovanna, Agnoli Claudia, Ricceri Fulvio, Tumino Rosario, Bueno de Mesquita H Bas, Bakker Marije F, Peeters Petra Hm, Skeie Guri, Braaten Tonje, Winkvist Anna, Johansson Ingegerd, Khaw Kay-Tee, Wareham Nicholas J, Key Tim, Travis Ruth, Schmidt Julie A, Merritt Melissa A, Riboli Elio, Romieu Isabelle, Ferrari Pietro
1International Agency for Research on Cancer,150 Cours Albert Thomas,69372 Lyon Cedex 08,France.
3Université de Lyon,Lyon,France.
Public Health Nutr. 2016 Feb;19(2):242-54. doi: 10.1017/S1368980015000294. Epub 2015 Feb 23.
Pattern analysis has emerged as a tool to depict the role of multiple nutrients/foods in relation to health outcomes. The present study aimed at extracting nutrient patterns with respect to breast cancer (BC) aetiology.
Nutrient patterns were derived with treelet transform (TT) and related to BC risk. TT was applied to twenty-three log-transformed nutrient densities from dietary questionnaires. Hazard ratios (HR) and 95 % confidence intervals computed using Cox proportional hazards models quantified the association between quintiles of nutrient pattern scores and risk of overall BC, and by hormonal receptor and menopausal status. Principal component analysis was applied for comparison.
The European Prospective Investigation into Cancer and Nutrition (EPIC).
Women (n 334 850) from the EPIC study.
The first TT component (TC1) highlighted a pattern rich in nutrients found in animal foods loading on cholesterol, protein, retinol, vitamins B12 and D, while the second TT component (TC2) reflected a diet rich in β-carotene, riboflavin, thiamin, vitamins C and B6, fibre, Fe, Ca, K, Mg, P and folate. While TC1 was not associated with BC risk, TC2 was inversely associated with BC risk overall (HRQ5 v. Q1=0·89, 95 % CI 0·83, 0·95, P trend<0·01) and showed a significantly lower risk in oestrogen receptor-positive (HRQ5 v. Q1=0·89, 95 % CI 0·81, 0·98, P trend=0·02) and progesterone receptor-positive tumours (HRQ5 v. Q1=0·87, 95 % CI 0·77, 0·98, P trend<0·01).
TT produces readily interpretable sparse components explaining similar amounts of variation as principal component analysis. Our results suggest that participants with a nutrient pattern high in micronutrients found in vegetables, fruits and cereals had a lower risk of BC.
模式分析已成为一种描述多种营养素/食物与健康结果之间关系的工具。本研究旨在提取与乳腺癌病因相关的营养模式。
采用小波变换(TT)得出营养模式,并将其与乳腺癌风险相关联。TT应用于饮食问卷中23种经对数转换的营养密度。使用Cox比例风险模型计算的风险比(HR)和95%置信区间量化了营养模式得分五分位数与总体乳腺癌风险之间的关联,并按激素受体和绝经状态进行了分析。应用主成分分析进行比较。
欧洲癌症与营养前瞻性调查(EPIC)。
来自EPIC研究的女性(n = 334850)。
第一个TT成分(TC1)突出显示了一种富含动物食物中营养素的模式,这些营养素包括胆固醇、蛋白质、视黄醇、维生素B12和D,而第二个TT成分(TC2)反映了一种富含β-胡萝卜素、核黄素、硫胺素、维生素C和B6、纤维、铁、钙、钾、镁、磷和叶酸的饮食。虽然TC1与乳腺癌风险无关,但TC2与总体乳腺癌风险呈负相关(HRQ5对比Q1 = 0·89,95% CI 0·83,0·95,P趋势<0·01),并且在雌激素受体阳性(HRQ5对比Q1 = 0·89,95% CI 0·81,0·98,P趋势 = 0·02)和孕激素受体阳性肿瘤中显示出显著较低的风险(HRQ5对比Q1 = 0·87,95% CI 0·77,0·98,P趋势<0·01)。
TT产生易于解释的稀疏成分,其解释的变异量与主成分分析相似。我们的结果表明,具有富含蔬菜、水果和谷物中发现的微量营养素的营养模式的参与者患乳腺癌的风险较低。