Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
Institute of Medical Genetics, Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
Neoplasia. 2019 Feb;21(2):230-238. doi: 10.1016/j.neo.2018.12.003. Epub 2019 Jan 8.
Tuberous sclerosis is caused by mutations in the TSC1 or TSC2 gene and characterized by development of tumors in multiple organs including the kidneys. TSC-associated tumors exhibit somatic loss of the second allele of the TSC genes, leading to aberrant activation of the mechanistic target of rapamycin (mTOR) signaling pathway. Activation of mTOR complex 1 (mTORC1) causes addiction to glucose and glutamine in Tsc1or Tsc2 mouse embryonic fibroblasts (MEFs). Blocking of glutamine anaplerosis in combination with glycolytic inhibition causes significant cell death in Tsc2 but not Tsc2 MEFs. In this study, we tested efficacy of dual inhibition of glycolysis with 3-BrPA and glutaminolysis with CB-839 for renal tumors in Tsc2 mice. Following 2 months of treatment of Tsc2 mice from the age of 12 months, combination of 3-BrPA and CB-839 significantly reduced overall size and cellular areas of all renal lesions (cystic/papillary adenomas and solid carcinomas), but neither alone did. Combination of 3-BrPA and CB-839 inhibited mTORC1 and the proliferation of tumor cells but did not increase apoptosis. However, combination of 3-BrPA and CB-839 was not as efficacious as rapamycin alone or rapamycin in combination with either 3-BrPA or CB-839 for renal lesions of Tsc2 mice. Consistently, rapamycin alone or rapamycin in combination with either 3-BrPA or CB-839 had stronger inhibitory effects on mTORC1 and proliferation of tumor cells than combination of 3-BrPA and CB-839. We conclude that combination of 3-BRPA and CB-839 may not offer a better therapeutic strategy than rapamycin for TSC-associated tumors.
结节性硬化症是由 TSC1 或 TSC2 基因突变引起的,其特征是在包括肾脏在内的多个器官中形成肿瘤。TSC 相关肿瘤表现出 TSC 基因第二个等位基因的体细胞缺失,导致机械靶标雷帕霉素(mTOR)信号通路的异常激活。mTOR 复合物 1(mTORC1)的激活导致 Tsc1 或 Tsc2 小鼠胚胎成纤维细胞(MEFs)对葡萄糖和谷氨酰胺的依赖。谷氨酰胺补料作用的阻断与糖酵解抑制相结合,在 Tsc2 中但不在 Tsc2 MEFs 中引起显著的细胞死亡。在这项研究中,我们测试了用 3-BrPA 抑制糖酵解和用 CB-839 抑制谷氨酰胺分解对 Tsc2 小鼠肾脏肿瘤的疗效。在 12 个月大的 Tsc2 小鼠接受为期 2 个月的治疗后,3-BrPA 和 CB-839 的联合治疗显著降低了所有肾脏病变(囊性/乳头状腺瘤和实体癌)的总体大小和细胞面积,但单独使用任何一种药物均无效。3-BrPA 和 CB-839 的联合治疗抑制了 mTORC1 和肿瘤细胞的增殖,但没有增加细胞凋亡。然而,3-BrPA 和 CB-839 的联合治疗对 Tsc2 小鼠的肾脏病变的疗效不如单独使用雷帕霉素或雷帕霉素与 3-BrPA 或 CB-839 中的任何一种联合治疗有效。一致地,单独使用雷帕霉素或雷帕霉素与 3-BrPA 或 CB-839 中的任何一种联合治疗比 3-BrPA 和 CB-839 的联合治疗对 mTORC1 和肿瘤细胞的增殖有更强的抑制作用。我们得出结论,与雷帕霉素相比,3-BRPA 和 CB-839 的联合治疗可能不是 TSC 相关肿瘤的更好治疗策略。