Suppr超能文献

表面上通过超氢化中间体诱导的多环芳烃的共价偶联。

On-Surface Hydrogen-Induced Covalent Coupling of Polycyclic Aromatic Hydrocarbons via a Superhydrogenated Intermediate.

机构信息

ESISNA Group, Materials Science Factory , Institute of Material Science of Madrid (ICMM-CSIC) , Sor Juana Inés de la Cruz 3 , 28049 Madrid , Spain.

nanotech@surfaces Laboratory , Empa, Swiss Federal Laboratories for Materials Science and Technology , Ueberlandstrasse 129 , 8600 Duebendorf , Switzerland.

出版信息

J Am Chem Soc. 2019 Feb 27;141(8):3550-3557. doi: 10.1021/jacs.8b12239. Epub 2019 Jan 29.

Abstract

The activation, hydrogenation, and covalent coupling of polycyclic aromatic hydrocarbons (PAHs) are processes of great importance in fields like chemistry, energy, biology, or health, among others. So far, they are based on the use of catalysts which drive and increase the efficiency of the thermally- or light-induced reaction. Here, we report on the catalyst-free covalent coupling of nonfunctionalized PAHs adsorbed on a relatively inert surface in the presence of atomic hydrogen. The underlying mechanism has been characterized by high-resolution scanning tunnelling microscopy and rationalized by density functional theory calculations. It is based on the formation of intermediate radical-like species upon hydrogen-induced molecular superhydrogenation which favors the covalent binding of PAHs in a thermally activated process, resulting in large coupled molecular nanostructures. The mechanism proposed in this work opens a door toward the direct formation of covalent, PAH-based, bottom-up synthesized nanoarchitectures on technologically relevant inert surfaces.

摘要

多环芳烃 (PAHs) 的活化、氢化和共价偶联是化学、能源、生物或健康等领域中非常重要的过程。到目前为止,这些过程基于使用催化剂来驱动和提高热或光诱导反应的效率。在这里,我们报告了在相对惰性表面上吸附的非功能化 PAHs 在原子氢存在下的无催化剂共价偶联。通过高分辨率扫描隧道显微镜对其进行了表征,并通过密度泛函理论计算对其进行了合理化。它基于在氢诱导的分子超氢化过程中形成中间类似自由基的物质,从而有利于 PAHs 在热激活过程中的共价键合,形成大的耦合分子纳米结构。这项工作中提出的机制为在技术上相关的惰性表面上直接形成基于共价键、基于 PAH 的自下而上合成的纳米结构开辟了道路。

相似文献

2
H catalysis through superhydrogenation of interstellar polycyclic aromatic hydrocarbons.通过星际多环芳烃的超氢化作用进行的H催化
Proc Int Astron Union. 2019 Apr;15(Suppl 350):264-266. doi: 10.1017/S1743921320000034. Epub 2020 Oct 12.
6
Manipulable Metal Catalyst for Nanographene Synthesis.用于纳米石墨烯合成的可操控金属催化剂。
Nano Lett. 2020 Nov 11;20(11):8339-8345. doi: 10.1021/acs.nanolett.0c03510. Epub 2020 Oct 22.
8
Superhydrogenation of pentacene: the reactivity of zigzag-edges.五并苯的超氢化:锯齿边缘的反应性。
Phys Chem Chem Phys. 2020 Jan 21;22(3):1557-1565. doi: 10.1039/c9cp05440e. Epub 2019 Dec 24.

引用本文的文献

3
Hydrogen-Induced Reduction Improves the Photoelectrocatalytic Performance of Titania.氢诱导还原提高了二氧化钛的光电催化性能。
ACS Appl Energy Mater. 2024 Feb 20;7(6):2101-2108. doi: 10.1021/acsaem.3c02707. eCollection 2024 Mar 25.
4
On-Surface Synthesis of a Radical 2D Supramolecular Organic Framework.自由基二维超分子有机框架的表面合成
J Am Chem Soc. 2024 Feb 7;146(5):3531-3538. doi: 10.1021/jacs.3c13702. Epub 2024 Jan 25.
7
On-Surface Synthesis of Unsaturated Hydrocarbon Chains through C-S Activation.通过C-S活化在表面合成不饱和烃链
Chemistry. 2022 Aug 22;28(47):e202200809. doi: 10.1002/chem.202200809. Epub 2022 Jul 11.
9
Cathodic electroorganic reaction on silicon oxide dielectric electrode.氧化硅介电电极上的阴极电有机反应。
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):32939-32946. doi: 10.1073/pnas.2005122117. Epub 2020 Dec 14.
10
On-Surface Synthesis of Chlorinated Narrow Graphene Nanoribbon Organometallic Hybrids.氯化窄石墨烯纳米带有机金属杂化物的表面合成
J Phys Chem Lett. 2020 Dec 17;11(24):10290-10297. doi: 10.1021/acs.jpclett.0c03134. Epub 2020 Nov 23.

本文引用的文献

2
On-Surface Synthesis of Heptacene Organometallic Complexes.表面合成并研究薁基金属有机配合物
J Am Chem Soc. 2017 Aug 30;139(34):11658-11661. doi: 10.1021/jacs.7b05192. Epub 2017 Aug 15.
6
Synthesis and characterization of triangulene.三角烯的合成与表征。
Nat Nanotechnol. 2017 May;12(4):308-311. doi: 10.1038/nnano.2016.305. Epub 2017 Feb 13.
8
10
On-Surface Synthesis of Atomically Precise Graphene Nanoribbons.在表面合成原子级精确的石墨烯纳米带。
Adv Mater. 2016 Aug;28(29):6222-31. doi: 10.1002/adma.201505738. Epub 2016 Feb 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验