Instituto de Ciencia de Materiales de Madrid (CSIC), Sor Juana Ines de la Cruz 3, 28049 Madrid, Spain.
Nanoscale. 2013 Nov 21;5(22):11058-65. doi: 10.1039/c3nr03706a. Epub 2013 Sep 26.
The thermal induced on-surface chemistry of large polycyclic aromatic hydrocarbons (PAHs) deposited on dielectric substrates is very rich and complex. We evidence temperature-assisted (cyclo)dehydrogenation reactions for C60H30 molecules and the subsequent bottom-up formation of assembled nanostructures, such as nanodomes, on the TiO2(110) surface. To this aim we have deposited, under ultra-high vacuum, a submonolayer coverage of C60H30 and studied, by a combination of experimental techniques (STM, XPS and NEXAFS) and theoretical methods, the different chemical on-surface interaction stages induced by the increasing temperature. We show that room temperature adsorbed molecules exhibit a weak interaction and freely diffuse on the surface, as previously reported for other aromatics. Nevertheless, a slight annealing induces a transition from this (meta)stable configuration into chemisorbed molecules. This adsorbate-surface interaction deforms the C60H30 molecular structure and quenches surface diffusion. Higher annealing temperatures lead to partial dehydrogenation, in which the molecule loses some of the hydrogen atoms and LUMO levels spread in the gap inducing a net total energy gain. Further annealing, up to around 750 K, leads to complete dehydrogenation. At these temperatures the fully dehydrogenated molecules link between them in a bottom-up coupling, forming nanodomes or fullerene-like monodisperse species readily on the dielectric surface. This work opens the door to the use of on-surface chemistry to generate new bottom-up tailored structures directly on high-K dielectric surfaces.
在介质衬底上沉积的大的多环芳烃(PAHs)的表面诱导热化学反应非常丰富和复杂。我们证明了 C60H30 分子的温度辅助(环)脱氢反应,以及随后在 TiO2(110)表面上形成组装纳米结构,如纳米穹顶。为此,我们在超高真空下沉积了 C60H30 的亚单层覆盖,并通过实验技术(STM、XPS 和 NEXAFS)和理论方法的组合,研究了不同的化学表面相互作用阶段,这些阶段是由温度升高引起的。我们表明,室温吸附分子表现出较弱的相互作用,并在表面上自由扩散,如以前报道的其他芳烃。然而,轻微的退火会导致从这种(亚)稳定构型到化学吸附分子的转变。这种吸附剂-表面相互作用会改变 C60H30 分子结构并猝灭表面扩散。更高的退火温度导致部分脱氢,其中分子失去一些氢原子,LUMO 水平在间隙中扩散,导致净总能量增加。进一步退火,直至约 750 K,导致完全脱氢。在这些温度下,完全脱氢的分子在底部自组装中相互连接,在介电表面上很容易形成纳米穹顶或类富勒烯的单分散物种。这项工作为在高介电常数的介电表面上直接生成新的自下而上定制结构的表面化学开辟了道路。