Encarnación Escobar José M, García-González Diana, Dević Ivan, Zhang Xuehua, Lohse Detlef
Max Planck Center Twente for Complex Fluid Dynamics, JM Burgers Center for Fluid Dynamics, Mesa+, Department of Science and Technology , University of Twente , Enschede 7522 NB , The Netherlands.
Max Planck Institute for Polymer Research , Mainz 55128 , Germany.
Langmuir. 2019 Feb 12;35(6):2099-2105. doi: 10.1021/acs.langmuir.8b03393. Epub 2019 Feb 4.
The evaporation of droplets occurs in a large variety of natural and technological processes such as medical diagnostics, agriculture, food industry, printing, and catalytic reactions. We study the different droplet morphologies adopted by an evaporating droplet on a surface with an elliptical patch with a different contact angle. We perform experiments to observe these morphologies and use numerical calculations to predict the effects of the patched surfaces. We observe that tuning the geometry of the patches offers control over the shape of the droplet. In the experiments, the drops of various volumes are placed on elliptical chemical patches of different aspect ratios and imaged in 3D using laser scanning confocal microscopy, extracting the droplet's shape. In the corresponding numerical simulations, we minimize the interfacial free energy of the droplet, by employing Surface Evolver. The numerical results are in good qualitative agreement with our experimental data and can be used for the design of micropatterned structures, potentially suggesting or excluding certain morphologies for particular applications. However, the experimental results show the effects of pinning and contact angle hysteresis, which are obviously absent in the numerical energy minimization. The work culminates with a morphology diagram in the aspect ratio vs relative volume parameter space, comparing the predictions with the measurements.
液滴蒸发发生在各种各样的自然和技术过程中,如医学诊断、农业、食品工业、印刷和催化反应。我们研究了在具有不同接触角的椭圆形贴片表面上蒸发液滴所呈现的不同形态。我们进行实验以观察这些形态,并使用数值计算来预测贴片表面的影响。我们观察到调整贴片的几何形状可以控制液滴的形状。在实验中,将各种体积的液滴放置在不同纵横比的椭圆形化学贴片上,并使用激光扫描共聚焦显微镜进行三维成像,提取液滴的形状。在相应的数值模拟中,我们使用表面演化器使液滴的界面自由能最小化。数值结果与我们的实验数据在定性上吻合良好,可用于微图案结构的设计,有可能为特定应用提出或排除某些形态。然而,实验结果显示了钉扎和接触角滞后的影响,而在数值能量最小化中显然不存在这些影响。这项工作最终得出了在纵横比与相对体积参数空间中的形态图,将预测结果与测量结果进行了比较。