Suppr超能文献

羊驼仅重链抗体库可变区的图谱

Landscape of variable domain of heavy-chain-only antibody repertoire from alpaca.

作者信息

Tu Zhui, Huang Xiaoqiang, Fu Jinheng, Hu Na, Zheng Wei, Li Yanping, Zhang Yang

机构信息

State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

出版信息

Immunology. 2020 Sep;161(1):53-65. doi: 10.1111/imm.13224. Epub 2020 Jun 30.

Abstract

Heavy-chain-only antibodies (HCAbs), which are devoid of light chains, have been found naturally occurring in various species including camelids and cartilaginous fish. Because of their high thermostability, refoldability and capacity for cell permeation, the variable regions of the heavy chain of HCAbs (VHHs) have been widely used in diagnosis, bio-imaging, food safety and therapeutics. Most immunogenetic and functional studies of HCAbs are based on case studies or a limited number of low-throughput sequencing data. A complete picture derived from more abundant high-throughput sequencing (HTS) data can help us gain deeper insights. We cloned and sequenced the full-length coding region of VHHs in Alpaca (Vicugna pacos) via HTS in this study. A new pipeline was developed to conduct an in-depth analysis of the HCAb repertoires. Various critical features, including the length distribution of complementarity-determining region 3 (CDR3), V(D)J usage, VJ pairing, germline-specific mutation rate and germline-specific scoring profiles (GSSPs), were systematically characterized. The quantitative data show that V(D)J usage and VHH recombination are highly biased. Interestingly, we found that the average CDR3 length of classical VHHs is longer than that of non-classical ones, whereas the mutation rates are similar in both kinds of VHHs. Finally, GSSPs were built to quantitatively describe and compare sequences that originate from each VJ pair. Overall, this study presents a comprehensive landscape of the HCAb repertoire, which can provide useful guidance for the modeling of somatic hypermutation and the design of novel functional VHHs or VHH repertoires via evolutionary profiles.

摘要

仅重链抗体(HCAbs)不含轻链,已在包括骆驼科动物和软骨鱼在内的多种物种中天然存在。由于其高热稳定性、可重折叠性和细胞渗透能力,HCAbs重链的可变区(VHHs)已广泛应用于诊断、生物成像、食品安全和治疗领域。大多数关于HCAbs的免疫遗传学和功能研究基于案例研究或有限数量的低通量测序数据。来自更丰富的高通量测序(HTS)数据的完整图景有助于我们获得更深入的见解。在本研究中,我们通过HTS克隆并测序了羊驼(小羊驼)中VHHs的全长编码区。开发了一种新的流程来对HCAbs库进行深入分析。系统地表征了各种关键特征,包括互补决定区3(CDR3)的长度分布、V(D)J使用情况、VJ配对、种系特异性突变率和种系特异性评分谱(GSSPs)。定量数据表明,V(D)J使用情况和VHH重组存在高度偏差。有趣的是,我们发现经典VHHs的平均CDR3长度比非经典VHHs的长,而两种VHHs的突变率相似。最后,构建了GSSPs以定量描述和比较源自每个VJ对序列。总体而言,本研究展示了HCAbs库的全面图景,可为体细胞超突变建模以及通过进化谱设计新型功能性VHHs或VHH库提供有用指导。

相似文献

1
Landscape of variable domain of heavy-chain-only antibody repertoire from alpaca.
Immunology. 2020 Sep;161(1):53-65. doi: 10.1111/imm.13224. Epub 2020 Jun 30.
3
Comparative Analysis of Immune Repertoires between Bactrian Camel's Conventional and Heavy-Chain Antibodies.
PLoS One. 2016 Sep 2;11(9):e0161801. doi: 10.1371/journal.pone.0161801. eCollection 2016.
4
Alpaca (Lama pacos) as a convenient source of recombinant camelid heavy chain antibodies (VHHs).
J Immunol Methods. 2007 Jul 31;324(1-2):13-25. doi: 10.1016/j.jim.2007.04.008. Epub 2007 May 15.
6
Characterization of heavy-chain antibody gene repertoires in Bactrian camels.
J Genet Genomics. 2023 Jan;50(1):38-45. doi: 10.1016/j.jgg.2022.04.010. Epub 2022 Apr 29.
7
Global analysis of VHHs framework regions with a structural alphabet.
Biochimie. 2016 Dec;131:11-19. doi: 10.1016/j.biochi.2016.09.005. Epub 2016 Sep 6.
8
Llama heavy-chain V regions consist of at least four distinct subfamilies revealing novel sequence features.
Mol Immunol. 2000 Aug;37(10):579-90. doi: 10.1016/s0161-5890(00)00081-x.

引用本文的文献

2
Developing drug-like single-domain antibodies (VHH) from in vitro libraries.
MAbs. 2025 Dec;17(1):2516676. doi: 10.1080/19420862.2025.2516676. Epub 2025 Jun 25.
5
A Nanobody Toolbox for Recognizing Distinct Epitopes on Cas9.
J Mol Biol. 2024 Dec 1;436(23):168836. doi: 10.1016/j.jmb.2024.168836. Epub 2024 Oct 30.
7
Single domain antibody: Development and application in biotechnology and biopharma.
Immunol Rev. 2024 Nov;328(1):98-112. doi: 10.1111/imr.13381. Epub 2024 Aug 21.
9
Applications and challenges in designing VHH-based bispecific antibodies: leveraging machine learning solutions.
MAbs. 2024 Jan-Dec;16(1):2341443. doi: 10.1080/19420862.2024.2341443. Epub 2024 Apr 26.
10
nanoBERT: a deep learning model for gene agnostic navigation of the nanobody mutational space.
Bioinform Adv. 2024 Mar 6;4(1):vbae033. doi: 10.1093/bioadv/vbae033. eCollection 2024.

本文引用的文献

2
High frequency of shared clonotypes in human B cell receptor repertoires.
Nature. 2019 Feb;566(7744):398-402. doi: 10.1038/s41586-019-0934-8. Epub 2019 Feb 13.
3
Changing the Apoptosis Pathway through Evolutionary Protein Design.
J Mol Biol. 2019 Feb 15;431(4):825-841. doi: 10.1016/j.jmb.2018.12.016. Epub 2019 Jan 6.
4
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.
Mol Biol Evol. 2018 Jun 1;35(6):1547-1549. doi: 10.1093/molbev/msy096.
6
Nanobodies and Nanobody-Based Human Heavy Chain Antibodies As Antitumor Therapeutics.
Front Immunol. 2017 Nov 22;8:1603. doi: 10.3389/fimmu.2017.01603. eCollection 2017.
7
T cell receptor β-chains display abnormal shortening and repertoire sharing in type 1 diabetes.
Nat Commun. 2017 Nov 27;8(1):1792. doi: 10.1038/s41467-017-01925-2.
9
Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells.
Nat Chem. 2017 Aug;9(8):762-771. doi: 10.1038/nchem.2811. Epub 2017 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验