UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
J Immunother Cancer. 2019 Jan 9;7(1):6. doi: 10.1186/s40425-018-0495-7.
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
癌症疫苗和溶瘤免疫疗法是很有前途的治疗策略,有可能为晚期癌症患者带来更大的临床获益。特别是,重组痘苗病毒(VV)作为介入剂具有很大的潜力。在本文中,我们首先总结了目前对病毒生物学和宿主-病毒相互作用中涉及的病毒基因的理解,以进一步提高这些药物在治疗应用中的效用。然后,我们讨论了使用 VV 作为癌症疫苗和溶瘤免疫疗法的基础和临床研究的最新发现。尽管从动物模型的转化研究中获得了令人鼓舞的结果,但单独使用 VV 载体作为癌症疫苗的临床试验结果大多令人失望。然而,VV 疫苗与其他形式的标准疗法相结合已产生了更好的临床疗效。例如,在晚期非小细胞肺癌中,将 TG4010(MVA-MUC1-IL2)与一线化疗联合使用,或在转移性乳腺癌中将 PANVAC 与多西他赛联合使用,为患者提供了明显的临床获益。另一种新的癌症疫苗方法是通过使用复制减毒的 VV 载体在 Batf3 依赖性树突状细胞(DC)中激活 STING 来刺激抗肿瘤免疫。溶瘤 VV 现在已经通过武装免疫刺激性基因或促凋亡分子进行了工程改造,以提高安全性和治疗效果,从而促进肿瘤免疫原性细胞死亡,导致增强 DC 介导的对识别肿瘤抗原的 T 细胞的交叉呈递,包括新抗原。Pexa-Vec 的令人鼓舞的转化和早期临床结果已经成熟,正在进行全球 III 期临床试验,用于治疗肝细胞癌患者。联合治疗方法,特别是那些使用免疫检查点阻断的方法,已经产生了令人兴奋的临床前结果,并需要开发创新的临床研究。最后,我们讨论了该领域仍然存在的主要障碍,并就下一代 VV 载体作为癌症治疗剂的开发提出了一些观点。