Department of Biology, Emory University, Atlanta, Georgia, USA.
Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA.
J Virol. 2019 Mar 5;93(6). doi: 10.1128/JVI.01534-18. Print 2019 Mar 15.
The high degree of conservation of CD8 T cell epitopes of influenza A virus (IAV) may allow for the development of T cell-inducing vaccines that provide protection across different strains and subtypes. This conservation is not fully explained by functional constraint, since an additional mutation(s) can compensate for the replicative fitness loss of IAV escape variants. Here, we propose three additional mechanisms that contribute to the conservation of CD8 T cell epitopes of IAV. First, influenza-specific CD8 T cells may protect predominantly against severe pathology rather than infection and may have only a modest effect on transmission. Second, polymorphism of the human major histocompatibility complex class I (MHC-I) gene restricts the advantage of an escape variant to only a small fraction of the human population who carry the relevant MHC-I alleles. Finally, infection with CD8 T cell escape variants may result in a compensatory increase in the responses to other epitopes of IAV. We use a combination of population genetics and epidemiological models to examine how the interplay between these mechanisms affects the rate of invasion of IAV escape variants. We conclude that for a wide range of biologically reasonable parameters, the invasion of an escape variant virus will be slow, with a timescale of a decade or more. The results suggest T cell-inducing vaccines do not engender the rapid evolution of IAV. Finally, we identify key parameters whose measurement will allow for more accurate quantification of the long-term effectiveness and impact of universal T cell-inducing influenza vaccines. Universal influenza vaccines against the conserved epitopes of influenza A virus have been proposed to minimize the burden of seasonal outbreaks and prepare for the pandemics. However, it is not clear how rapidly T cell-inducing vaccines will select for viruses that escape these T cell responses. Our mathematical models explore the factors that contribute to the conservation of CD8 T cell epitopes and how rapidly the virus will evolve in response to T cell-inducing vaccines. We identify the key biological parameters to be measured and questions that need to be addressed in future studies.
流感病毒 (IAV) 的 CD8 T 细胞表位高度保守,这可能允许开发诱导 T 细胞的疫苗,从而为不同的株和亚型提供保护。这种保守性不能完全用功能约束来解释,因为额外的突变 (s) 可以补偿 IAV 逃逸变体的复制适应性损失。在这里,我们提出了三个额外的机制,这些机制有助于 IAV 的 CD8 T 细胞表位的保守性。首先,流感特异性 CD8 T 细胞可能主要保护免受严重的病理损害,而不是感染,并且对传播的影响可能很小。其次,人类主要组织相容性复合体 I 类 (MHC-I) 基因的多态性限制了逃逸变体的优势仅在携带相关 MHC-I 等位基因的人类中的一小部分中。最后,感染 CD8 T 细胞逃逸变体可能导致对 IAV 的其他表位的反应代偿性增加。我们使用群体遗传学和流行病学模型的组合来研究这些机制之间的相互作用如何影响 IAV 逃逸变体的入侵速度。我们的结论是,对于广泛的生物学合理参数,逃逸变体病毒的入侵速度将很慢,时间尺度为十年或更长时间。结果表明,T 细胞诱导疫苗不会引起 IAV 的快速进化。最后,我们确定了关键参数,其测量将允许更准确地量化通用 T 细胞诱导流感疫苗的长期有效性和影响。已经提出针对流感 A 病毒保守表位的通用流感疫苗,以最小化季节性爆发的负担并为大流行做好准备。然而,目前尚不清楚 T 细胞诱导疫苗将多快选择逃避这些 T 细胞反应的病毒。我们的数学模型探讨了有助于 CD8 T 细胞表位保守性的因素,以及病毒对 T 细胞诱导疫苗的反应速度。我们确定了要测量的关键生物学参数以及未来研究中需要解决的问题。