Suppr超能文献

基于神经网络的胎心监护信号分类算法的设计与实现

The Design and Implementation of Cardiotocography Signals Classification Algorithm Based on Neural Network.

作者信息

Tang Haijing, Wang Taoyi, Li Mengke, Yang Xu

机构信息

School of Computer Science and Technology, Beijing Institute of Technology, Beijing 10081, China.

出版信息

Comput Math Methods Med. 2018 Dec 3;2018:8568617. doi: 10.1155/2018/8568617. eCollection 2018.

Abstract

Mobile medical care is a hot issue in current medical research. Due to the inconvenience of going to hospital for fetal heart monitoring and the limited medical resources, real-time monitoring of fetal health on portable devices has become an urgent need for pregnant women, which helps to protect the health of the fetus in a more comprehensive manner and reduce the workload of doctors. For the feature acquisition of the fetal heart rate (FHR) signal, the traditional feature-based classification methods need to manually read the morphological features from the FHR curve, which is time-consuming and costly and has a certain degree of calibration bias. This paper proposes a classification method of the FHR signal based on neural networks, which can avoid manual feature acquisition and reduce the error caused by human factors. The algorithm will directly learn from the FHR data and truly realize the real-time diagnosis of FHR data. The convolution neural network classification method named "MKNet" and recurrent neural network named "MKRNN" are designed. The main contents of this paper include the preprocessing of the FHR signal, the training of the classification model, and the experiment evaluation. Finally, MKNet is proved to be the best algorithm for real-time FHR signal classification.

摘要

移动医疗是当前医学研究中的一个热点问题。由于前往医院进行胎心监护存在不便以及医疗资源有限,在便携式设备上对胎儿健康进行实时监测已成为孕妇的迫切需求,这有助于更全面地保护胎儿健康并减轻医生的工作量。对于胎心率(FHR)信号的特征提取,传统的基于特征的分类方法需要人工从FHR曲线中读取形态特征,既耗时又成本高,且存在一定程度的校准偏差。本文提出了一种基于神经网络的FHR信号分类方法,该方法可以避免人工特征提取并减少人为因素导致的误差。该算法将直接从FHR数据中学习,真正实现对FHR数据的实时诊断。设计了名为“MKNet”的卷积神经网络分类方法和名为“MKRNN”的循环神经网络。本文的主要内容包括FHR信号的预处理、分类模型的训练以及实验评估。最后,证明MKNet是实时FHR信号分类的最佳算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0a0e/6305052/ed433d791e1d/CMMM2018-8568617.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验