Suppr超能文献

预测常见的产妇产后并发症:利用健康管理数据和机器学习。

Predicting common maternal postpartum complications: leveraging health administrative data and machine learning.

机构信息

School of Public Health, Curtin University, Bentley, WA, Australia.

School of Medicine, University of Queensland, Brisbane, QLD, Australia.

出版信息

BJOG. 2019 May;126(6):702-709. doi: 10.1111/1471-0528.15607. Epub 2019 Feb 20.

Abstract

OBJECTIVE

We aimed to predict the risk of common maternal postpartum complications requiring an inpatient episode of care.

DESIGN AND SETTING

Maternal data from the beginning of gestation up to and including the delivery, and neonatal data recorded at delivery, were used to predict postpartum complications.

SAMPLE

Administrative health data of all inpatient live births (n = 422 509) in the Australian state of Queensland between January 2009 and October 2015.

METHOD

Gradient boosted trees were used with five-fold cross-validation to compare model performance. The best performing models for each outcome were then assessed in the independent validation data using the area under the receiver operating curve (AUC-ROC).

MAIN OUTCOME MEASURE

Postpartum complications occurring in the first 12 weeks after delivery requiring hospital admission.

RESULTS

Postpartum hypertensive disorders obtained good discrimination in the independent validation data (AUC = 0.879, 95% CI 0.846-0.912), as did obstetric surgical wound infection (AUC = 0.856, 95% CI 0.838-0.873), whereas postpartum sepsis and haemorrhage obtained poor discrimination.

CONCLUSIONS

Our study suggests that routinely collected health data have the potential to play an important role in helping determine women's risk of common postpartum complications leading to hospital admission. This information can be presented to clinical staff after delivery to help guide immediate postpartum care, delayed discharge, and post-discharge patient follow up. For such a system to be effective and valued, it must produce accurate predictions, and our findings suggest areas where routine data collection could be strengthened to this end.

TWEETABLE ABSTRACT

Improved prediction of maternal postnatal hypertensive disorders and wound infection via machine learning.

摘要

目的

我们旨在预测常见产后并发症的风险,这些并发症需要住院治疗。

设计和设置

使用从妊娠开始到分娩以及分娩时记录的新生儿数据来预测产后并发症。

样本

2009 年 1 月至 2015 年 10 月期间澳大利亚昆士兰州所有住院活产(n=422509)的行政健康数据。

方法

使用五重交叉验证的梯度提升树来比较模型性能。然后,在独立验证数据中使用接收器操作曲线下的面积(AUC-ROC)评估每个结果的最佳表现模型。

主要结果测量

产后 12 周内发生的需要住院治疗的并发症。

结果

产后高血压疾病在独立验证数据中获得了良好的区分度(AUC=0.879,95%CI 0.846-0.912),产科手术伤口感染也是如此(AUC=0.856,95%CI 0.838-0.873),而产后败血症和出血的区分度较差。

结论

我们的研究表明,常规收集的健康数据有可能在帮助确定妇女常见产后并发症导致住院的风险方面发挥重要作用。分娩后可向临床工作人员提供这些信息,以帮助指导产后护理、延迟出院和出院后患者随访。为了使该系统有效和有价值,它必须产生准确的预测,我们的研究结果表明,常规数据收集可以在这方面得到加强。

推特摘要

通过机器学习提高产后高血压疾病和伤口感染的预测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验