Suppr超能文献

预测新生儿呼吸窘迫综合征和低血糖症出院前:利用健康管理数据和机器学习。

Predicting neonatal respiratory distress syndrome and hypoglycaemia prior to discharge: Leveraging health administrative data and machine learning.

机构信息

School of Public Health, Building 400, Kent Street, Bentley, Curtin University, WA 6101, Australia.

School of Medicine, University of Queensland, Brisbane, Australia.

出版信息

J Biomed Inform. 2021 Feb;114:103651. doi: 10.1016/j.jbi.2020.103651. Epub 2020 Dec 5.

Abstract

OBJECTIVES

A major challenge for hospitals and clinicians is the early identification of neonates at risk of developing adverse conditions. We develop a model based on routinely collected administrative data, which accurately predicts two common disorders among early term and preterm (<39 weeks) neonates prior to discharge.

STUDY DESIGN

The data included all inpatient live births born prior to 39 weeks (n = 154,755) occurring in the Australian state of Queensland between January 2009 and December 2015. Predictor variables included all maternal data captured in administrative records from the beginning of gestation up to, and including, the delivery, as well as neonatal data recorded at the delivery. Gradient boosted trees were used to predict neonatal respiratory distress syndrome and hypoglycaemia prior to discharge, with model performance benchmarked against a logistic regression models.

RESULTS

The gradient boosted trees model achieved very high discrimination for respiratory distress syndrome [AUC = 0.923, 95% CI (0.917, 0.928)] and good discrimination for hypoglycaemia [AUC = 0.832, 95% CI (0.827, 0.837)] in the validation data, as well as outperforming the logistic regression models.

CONCLUSION

Our study suggests that routinely collected health data have the potential to play an important role in assisting clinicians to identify neonates at risk of developing selected disorders shortly after birth. Despite achieving high levels of discrimination, many issues remain before such models can be implemented in practice, which we discuss in relation to our findings.

摘要

目的

医院和临床医生面临的一个主要挑战是早期识别有发生不良情况风险的新生儿。我们基于常规收集的行政数据开发了一个模型,该模型可以在出院前准确预测早期和早产(<39 周)新生儿中两种常见疾病。

研究设计

数据包括 2009 年 1 月至 2015 年 12 月期间澳大利亚昆士兰州所有提前至 39 周出生的住院活产儿(n=154755)。预测变量包括从妊娠开始到分娩时所有记录在行政记录中的产妇数据,以及分娩时记录的新生儿数据。梯度提升树用于预测新生儿呼吸窘迫综合征和低血糖症,以逻辑回归模型为基准评估模型性能。

结果

梯度提升树模型在验证数据中对呼吸窘迫综合征具有非常高的区分度 [AUC=0.923,95%CI(0.917,0.928)],对低血糖症的区分度较好 [AUC=0.832,95%CI(0.827,0.837)],优于逻辑回归模型。

结论

我们的研究表明,常规收集的健康数据有可能在协助临床医生在出生后不久识别有发生特定疾病风险的新生儿方面发挥重要作用。尽管具有较高的区分度,但在这些模型可以实际应用之前,还有许多问题需要解决,我们将在与研究结果相关的内容中进行讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验